Fractal nature analysis in porous structured bio-ceramics
Abstract
Hydroxyapatite scaffold is a type of bio-ceramic. Its cellular design has similarities with the morphologies in nature. Therefore, it is very important to control the structure, especially the porosity, as one of the main features for bio-ceramics applications. According to some literature, freeze casting can form the shape of dendrites and remain a foam structure after ice sublimation. Ice nucleation became more heterogeneous with the aid of printing materials during freeze casting. This procedure can even improve the issue of crack formation. In this paper, we studied the mechanical properties of hydroxyapatite scaffold. We also analyzed the porosity by fractal nature characterization, and successfully reconstructed pore shape, which is important for predicting ceramic morphology. We applied SEM analysis on bio-ceramic samples, at four different magnifications for the same pore structure. This is important for fractal analysis and pores reconstruction. We calculated the fractal dimensions based on measurements. In this way, we completed the fractal characterization of porosity and confirmed possibilities for successful porous shapes reconstruction. In this paper, we confirmed, for the first time, that fractal nature can be successfully applied in the area of porous bio-ceramics.
References
- 1. , J. Ceram. Sci. Tech. 07 (2016) 365. https://doi.org/10.4416/JCST2016-00047, ©2016 Göller Verlag. Google Scholar
- 2. V. V. Mitić, G. M. Lazović, D. M. Dordević, M. N. Stanković, V. V. Paunović, N. S. Krstić and J. Ž. Manojlović, Thermal Sci., OnLine-First (2020) 232, https://doi.org/10.2298/TSCI200117232M. Google Scholar
- 3. , Integr. Ferroelectr. 212 (2020) 135, https://doi.org/10.1080/10584587.2020.1819042. Crossref, Web of Science, ADS, Google Scholar
- 4. , Mod. Phys. Lett. B 34(34) (2020) 2150159, https://doi.org/10.1142/s0217984921501591. Link, Web of Science, ADS, Google Scholar
- 5. V. V. Mitić, G. Lazović, B. Randjelović, V. Paunović, I. Radović, A. Stajčić and B. Vlahović, Ferroelectrics 570 (2021) 145, https://doi.org/10.1080/00150193.2020.1839265. Google Scholar
- 6. , Mod. Phys. Lett. B 34(35) (2020) 2150172, https://doi.org/10.1142/S0217984921501724. Link, Web of Science, ADS, Google Scholar
- 7. , Morphologie 101 (2017) 125. https://doi.org/10.1016/j.morpho.2017.03.007 Crossref, Google Scholar
- 8. , Materials 10 (2017). https://doi.org/10.3390/ma10040334 Crossref, Web of Science, Google Scholar
- 9. , Biomaterials 27 (2006) 5480. https://doi.org/10.1016/j.biomaterials.2006.06.028 Crossref, Web of Science, Google Scholar
- 10. , Mater. Today 19 (2016) 69. https://doi.org/10.1016/j.mattod.2015.10.008 Crossref, Web of Science, Google Scholar
- 11. , J. Am. Chem. Soc. 66 (1944) 1664. https://doi.org/10.1021/ja01238a017 Crossref, Google Scholar
- 12. , Soft Matter 15 (2019) 825. https://doi.org/10.1039/c8sm02160k Crossref, Web of Science, ADS, Google Scholar
- 13. , ACS Nano. 13 (2019) 3953. https://doi.org/10.1021/acsnano.8b07294 Crossref, Web of Science, Google Scholar
- 14. , Chemistry 25 (2019) 5768. https://doi.org/10.1002/chem.201900306 Crossref, Web of Science, Google Scholar
- 15. , Ceramics 2 (2019) 148. https://doi.org/10.3390/ceramics2010014 Crossref, Web of Science, Google Scholar
- 16. , Science 312 (2006) 1312. Google Scholar
- 17. , Nat. Mater. 13 (2014) 508. https://doi.org/10.1038/nmat3915 Crossref, Web of Science, ADS, Google Scholar
- 18. , Science 360 (2018) 303. https://doi.org/10.1126/science.aar4503 Crossref, Web of Science, ADS, Google Scholar
- 19. , Ceramics 2 (2019) 161. https://doi.org/10.3390/ceramics2010015 Crossref, Web of Science, Google Scholar
- 20. , J. Appl. Phys. 35 (1964) 2986. https://doi.org/10.1063/1.1713142 Crossref, Web of Science, ADS, Google Scholar
- 21. , J. Mater. Res. Technol-JMRT 8 (2019) 2247. https://doi.org/10.1016/j.jmrt.2018.12.024 Crossref, Web of Science, Google Scholar
- 22. , Mater. Design 164 (2019) 10, Art no. 107561. https://doi.org/10.1016/j.matdes.2018.107561 Google Scholar
- 23. , J. Mater. Chem. A 6 (2018) 21978. https://doi.org/10.1039/c8ta07512c Crossref, Google Scholar
- 24. , ACS Biomater. Sci. & Eng. 5 (2019) 2122. https://doi.org/10.1021/acsbiomaterials.8b01308 Crossref, Web of Science, Google Scholar
- 25. , Sci. Rep. 9 (2019). https://doi.org/10.1038/s41598-018-36789-z Crossref, Web of Science, Google Scholar
- 26. , Ceram. Int. 45 (2019) 19577. https://doi.org/10.1016/j.ceramint.2019.06.203 Crossref, Web of Science, Google Scholar
- 27. , Acta Biomater 72 (2018) 94. https://doi.org/10.1016/j.actbio.2018.03.039 Crossref, Web of Science, Google Scholar
- 28. , ACS Appl. Mater. Interfaces 9 (2017) 37623. https://doi.org/10.1021/acsami.7b12567 Crossref, Web of Science, Google Scholar
- 29. , Biofabrication 8 (2016). https://doi.org/10.1088/1758-5090/8/1/015003 Crossref, Web of Science, Google Scholar
- 30. , J. Eur. Ceramic Soc. 39 (2019) 3513, https://doi.org/10.1016/j.jeurceramsoc.2019.04.009. Crossref, Web of Science, Google Scholar
- 31. , J. Mining Metal. Sec. B Metallurgy 47 (2011) 157, http://dx.doi.org/10.2298/JMMB110331011PIF(2012)=1.435, http://www.jmmab.com/images/pdf/2011/mcpmasc-oct-2011-157-169.pdf. Crossref, Google Scholar
- 32. V. V. Mitić, G. Lazović, J. Ž. Manojlović, W.-C. Huang, M. M. Stojiljković, H. Facht and B. Vlahović, Therm. Sci. 32 (2020) 2203, https://doi.org/10.2298/TSCI191007451M. Google Scholar
- 33. , Sci. Sinter. 45 (2013) 223. Crossref, Web of Science, Google Scholar
- 34. , Ceram. Int. 45 (2019) 9679, https://doi.org/10.1016/j.ceramint.2019.01.020. Crossref, Web of Science, Google Scholar
- 35. , Mater. Res. Bull. 101 (2018) 175, https://doi.org/10.1016/j.materresbull.2018.01.019. Crossref, Web of Science, Google Scholar
- 36. , AIP Adv. 8 (2018) 075024. https://doi.org/10.1063/1.5034469 https://doi.org/10.1063/1.5034469. Crossref, Web of Science, Google Scholar
- 37. , Mod. Phys. Lett. B 34 (2020) 1, https://doi.org/10.1142/S0217984920400618. Google Scholar