Direct existence to suggest activity of copper ions surface diffusion on nanowire in growth process
Abstract
As regards the copper oxide nanowire growth process, our experiment was consistent with the proposal of copper ions surface diffusion on a nanowire. Simply in the atmospheric pressure it is possible to synthesize CuO nanowires by annealing a copper sheet. Under a general copper oxide nanowires occurring condition, pouring the flow rate of a slight amount of air into an enclosed electric furnace in the atmospheric pressure, copper oxide nanowires adhering copper particles were synthesized on copper sheet successfully. In the growth process of the CuO wire, when the Cu substrate was heated in the air, stresses caused grain boundaries of Cu2O and CuO layers in the Cu substrate. Ultimately Cu ions formed a wire tip diffusing on the surface of a CuO wire in the vertical direction to the top surface of the CuO layer, while assembling to the tip. In this report, we describe characteristics of the structure of the CuO nanowire obtained by lowering the air flow rate.
References
- 1. , Zeit. Phys. B Condens. Matter 64 (1986) 189. https://doi.org/10.1007/BF01303701 ADS, Google Scholar
- 2. , Phys. Rev. Lett. 58 (1987) 908. https://doi.org/10.1103/PhysRevLett.58.908 Web of Science, ADS, Google Scholar
- 3. , Proc. 1st E. C. Photovoltaic Solar Energy Conf. (Luxemburg, 1977), pp. 1170–1181. Google Scholar
- 4. , Solar Cells 7 (1982) 247. https://doi.org/10.1016/0379-6787(82)90050-3 ADS, Google Scholar
- 5. , Proc. 2nd E. C. Photovoltaic Solar Energy Conf. (Berlin, 1979), pp. 917–924. Google Scholar
- 6. , Nature 421 (2003) 241. https://doi.org/10.1038/nature01353 Web of Science, ADS, Google Scholar
- 7. , Proc. 13th IEEE Photovoltaic Spec. Conf. (Washington, D.C., 1978), pp. 174–183. Google Scholar
- 8. , Superlattices Microst. 36 (2004) 31. https://doi.org/10.1016/j.spmi.2004.08.021 Web of Science, ADS, Google Scholar
- 9. , Appl. Phys. Lett. 4 (1964) 89. https://doi.org/10.1063/1.1753975 Web of Science, ADS, Google Scholar
- 10. , Semicond. Sci. Technol. 20 (2005) S22. https://doi.org/10.1088/0268-1242/20/4/003 Web of Science, ADS, Google Scholar
- 11. , Nano Lett. 2 (2002) 1333. https://doi.org/10.1021/nl0257519 Web of Science, ADS, Google Scholar
- 12. , Mater. Chem. Phys. 93 (2005) 35. https://doi.org/10.1016/j.matchemphys.2005.02.002 Web of Science, Google Scholar
- 13. , Appl. Phys. Lett. 89 (2006) 133125. https://doi.org/10.1063/1.2355474 Web of Science, ADS, Google Scholar
- 14. , Oxid. Met. 21 (1984) 89. https://doi.org/10.1007/BF00659470 Web of Science, Google Scholar
- 15. , J. Appl. Phys. 106 (2009) 034303. https://doi.org/10.1063/1.3187833 Web of Science, Google Scholar
- 16. , Corros. Sci. 10 (2005) 325. https://doi.org/10.1016/S0010-938X(70)80024-5 Web of Science, Google Scholar
- 17. , J. Mater. Sci. Lett. 2 (1983) 383. https://doi.org/10.1007/BF00726336 Google Scholar
- 18. , Scripta Mater. 56 (2007) 1031. https://doi.org/10.1016/j.scriptamat.2007.02.036 Web of Science, Google Scholar
- 19. , Acta Mater. 59 (2011) 2491. https://doi.org/10.1016/j.actamat.2010.12.052 Web of Science, ADS, Google Scholar
- 20. , J. Appl. Phys. 111 (2012) 104305. https://doi.org/10.1063/1.4718436 Web of Science, ADS, Google Scholar
- 21. , J. Cryst. Growth 260 (2004) 130. https://doi.org/10.1016/j.jcrysgro.2003.08.012 Web of Science, ADS, Google Scholar
- 22. , J. Phys.: Condens. Matter 16 (2004) 8531. https://doi.org/10.1088/0953-8984/16/47/007 Web of Science, ADS, Google Scholar
- 23. , Appl. Surf. Sci. 257 (2010) 62. https://doi.org/10.1016/j.apsusc.2010.06.034 Web of Science, ADS, Google Scholar
- 24. , J. Nanomater. 2011 (2011) 268508. https://doi.org/10.1155/2011/268508 Google Scholar
- 25. , Mater. Express 1 (2011) 176. https://doi.org/10.1166/mex.2011.1022 Web of Science, Google Scholar