Electrical and optical properties of SrTiO3 nanopowders: Effect of different dopants Ba and Ag
Abstract
Using strontium–titanium salts precursor, nanopowders (STO-based-NPs) were successfully synthesized by controlled gel-combustion method. Citric and nitric acids in an optimum ratio were used as the fuel and oxidizer agents, respectively. After heat treatment at 850C, the crystalline structure of the products was investigated by X-ray diffraction. The effects of Ba and Ag dopants on particle size distribution were discussed by transmission electron microscopy (TEM). The optical and dielectric parameters such as energy band gap , real and imaginary parts of refractive index, dielectric function and energy loss function of nanopowders have been investigated by UV–Vis and FTIR spectra. The band gap of SrTiO3 increased with increasing Ba, Ag and Ba–Ag. Different atomic radii of dopants are responsible for changing optical and dielectric parameters due to the altered orbital configuration of the lattice structure.
References
- 1. , Phase Transit. 68(3) (1999) 501–522. Crossref, Web of Science, Google Scholar
- 2. , Appl. Phys. Lett. 96(7) (2010) 1901. Crossref, Web of Science, Google Scholar
- 3. , Jpn. J. Appl. 47(9S) (2008) 7486. Crossref, Web of Science, ADS, Google Scholar
- 4. , J. Phys. Chem. B 108(26) (2004) 8992–8995. Crossref, Web of Science, Google Scholar
- 5. , J. Vac. Sci. Technol. B 18(4) (2000) 2242–2254. Crossref, Web of Science, Google Scholar
- 6. , J. Phys. C: Solid State Phys. 17(7) (1984) 1321. Crossref, Web of Science, ADS, Google Scholar
- 7. , J. Phys. Chem. C 113(33) (2009) 15046–15050. Crossref, Web of Science, Google Scholar
- 8. , Phys. B: Condens. Matter 404(16) (2009) 2202–2212. Crossref, Web of Science, ADS, Google Scholar
- 9. , J. Appl. 113(5) (2013) 053705. Crossref, Web of Science, ADS, Google Scholar
- 10. , J. Am. Ceram. Soc. 53(2) (1970) 91–95. Crossref, Google Scholar
- 11. , J. Mater. Sci. 31(19) (1996) 5033–5037. Crossref, Web of Science, ADS, Google Scholar
- 12. , J. Mater. Sci. 45(6) (2010) 1448–1452. Crossref, Web of Science, ADS, Google Scholar
- 13. , Eur. Phys. J. Appl. Phys. 54(02) (2011) 20701. Crossref, Web of Science, ADS, Google Scholar
- 14. , Results Phys. 5 (2015) 309–313. Crossref, Web of Science, ADS, Google Scholar
- 15. , Acta Crystallogr. B: Struct. Sci. 51(6) (1995) 942–951. Crossref, Web of Science, ADS, Google Scholar
- 16. , Vibrational Optical Activity: Principles and Applications (John Wiley & Sons, New York, 2011). Crossref, Google Scholar
- 17. , Inverse Probl. Sci. Eng. 20(2) (2012) 227–232. Crossref, Web of Science, Google Scholar
- 18. , Mater. Lett. 65(21) (2011) 3254–3257. Crossref, Web of Science, Google Scholar
- 19. , J. Phys. Chem. B 107(9) (2003) 1977–1981. Crossref, Web of Science, Google Scholar
- 20. , Jpn. J. Appl. Phys. 48(9S1) (2009) 09KC11. Google Scholar
- 21. , J. Korean Phys. Soc. 63(2) (2013) 241–245. Crossref, Web of Science, Google Scholar
- 22. , Rev. Sci. Instrum. 76(8) (2005) 083108. Crossref, Web of Science, Google Scholar
- 23. , Phys. Rev. B 59(20) (1999) 12842. Crossref, Web of Science, ADS, Google Scholar
- 24. , Astron. Astrophys. 483(2) (2008) 661–672. Crossref, Web of Science, ADS, Google Scholar