STRUCTURAL AND ELECTRONIC PROPERTIES OF METAL-DOPED ORGANIC SEMICONDUCTORS
Abstract
Interaction of metal atoms with organic thin films is a fundamental issue in the optimization performances of novel devices. The computational investigations, based on density functional theory, reveal that a realistic description of the reactive processes is obtained when the organic thin film is modeled by its crystallographic structure. In this case, the metal atoms can react with multiple organic molecules present in the solid forming complexes where they are bound both to O atoms and to aromatic C atoms of the molecules. Calculated band gap states, induced by chemical reaction upon deposition, reproduce quite well the measured density of states as a function of the metal concentration in the solid. Simulated core level shift spectra for N(1s), O(1s) and Al (2p) in doped systems are in good agreement with experimental spectra and the electronic structure analysis provides a microscopic description of reaction processes. Interestingly, K atoms in PTCDA solid are ionically bound to anhydride O atoms and are able to form quasi mono-dimensional chain along the stack direction of the organic material.
References
- Nature 335, 137 (1988), DOI: 10.1038/335137a0. Web of Science, ADS, Google Scholar
- Adv. Mater. 2, 287 (1990), DOI: 10.1002/adma.19900020604. Web of Science, Google Scholar
- IEEE Circuits Devices Mag. 5, 33 (1990), DOI: 10.1109/101.25029. Google Scholar
- IEEE Trans. Electron Devices 36, 66 (1989), DOI: 10.1109/16.21179. Web of Science, ADS, Google Scholar
- Solid State Phys. 49, 1 (1995). Web of Science, Google Scholar
- App. Phys. Lett. 51, 913 (1987), DOI: 10.1063/1.98799. Web of Science, ADS, Google Scholar
- Synth. Met. 41–43, 2473 (1991). Google Scholar
- Phys. Rev. B 32, 1172 (1985), DOI: 10.1103/PhysRevB.32.1172. Web of Science, ADS, Google Scholar
- Mat. Sci. Eng. 10, 85 (1993). Web of Science, Google Scholar
- J. Appl. Phys. 77, 6289 (1995), DOI: 10.1063/1.359096. Web of Science, ADS, Google Scholar
- Science 270, 972 (1995), DOI: 10.1126/science.270.5238.972. Web of Science, ADS, Google Scholar
- J. Appl. Phys. 89, 4986 (2001), DOI: 10.1063/1.1359161. Web of Science, ADS, Google Scholar
- Appl. Phys. 76, 2128 (2000). Web of Science, Google Scholar
- App. Phys. Lett. 74, 3209 (1999), DOI: 10.1063/1.124107. Web of Science, ADS, Google Scholar
- Phys. Rev. B 54, 13748 (1996), DOI: 10.1103/PhysRevB.54.13748. Web of Science, ADS, Google Scholar
- J. Am. Chem. Soc. 122, 5391 (2000), DOI: 10.1021/ja994265t. Web of Science, Google Scholar
- J. Appl. Phys. 89, 449 (2001), DOI: 10.1063/1.1333740. Web of Science, ADS, Google Scholar
- Surf. Sci. Rep. 42, 1 (2001), DOI: 10.1016/S0167-5729(00)00012-1. Web of Science, ADS, Google Scholar
- Adv. Mater. 11, 605 (1999). Web of Science, Google Scholar
- Phys. Rev. B 65, 155314 (2002), DOI: 10.1103/PhysRevB.65.155314. Web of Science, ADS, Google Scholar
- Phys Rev. Lett. 98, 046401 (2007), DOI: 10.1103/PhysRevLett.98.046401. Web of Science, Google Scholar
- J. Am. Chem. Soc. 125, 7808 (2003), DOI: 10.1021/ja029090t. Web of Science, Google Scholar
- J. Appl. Phys. 98, 023707 (2005), DOI: 10.1063/1.1953869. Web of Science, Google Scholar
- Phys. Rev. B 50, 10561 (1994), DOI: 10.1103/PhysRevB.50.10561. Web of Science, Google Scholar
- Phys. Rev. Lett. 55, 2471 (1985), DOI: 10.1103/PhysRevLett.55.2471. Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 69, 1982 (1992), DOI: 10.1103/PhysRevLett.69.1982. Web of Science, Google Scholar
- Phys. Rev. B 47, 10142 (1993), DOI: 10.1103/PhysRevB.47.10142. Web of Science, Google Scholar
- Phys. Rev. B 41, 7892 (1990), DOI: 10.1103/PhysRevB.41.7892. Web of Science, ADS, Google Scholar
- Phys. Rev. B 46, 1766 (1992), DOI: 10.1103/PhysRevB.46.1766. Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 71, 2338 (1993), DOI: 10.1103/PhysRevLett.71.2338. Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 79, 5174 (1997), DOI: 10.1103/PhysRevLett.79.5174. Web of Science, ADS, Google Scholar
- Appl. Phys. Lett. 76, 553 (2000), DOI: 10.1063/1.125815. Web of Science, ADS, Google Scholar
- Phys. Rev. B 63, 075307 (2001), DOI: 10.1103/PhysRevB.63.075307. Web of Science, Google Scholar
- Phys. Rev. B 61, 7716 (2000), DOI: 10.1103/PhysRevB.61.7716. Web of Science, ADS, Google Scholar
- J. Electron Spectroscop. Relat. Phenom. 20, 333 (1980). Web of Science, Google Scholar
- Phys. Rev. B 61, 992 (1993). Google Scholar
- Z. Natur-forsch. B 46, 901 (1991). Google Scholar
- Anal. Sci. 12, 153 (1996), DOI: 10.2116/analsci.12.153. Web of Science, Google Scholar
- J. Am. Chem. Soc. 121, 8216 (1999), DOI: 10.1021/ja991060b. Web of Science, Google Scholar
- Chem. Phys. Lett. 294, 263 (1998), DOI: 10.1016/S0009-2614(98)00829-X. Web of Science, ADS, Google Scholar
- Appl. Phys. Lett. 72, 1575 (1998), DOI: 10.1063/1.121119. Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 77, 3865 (1996), DOI: 10.1103/PhysRevLett.77.3865. Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 78, 1396(E) (1997), DOI: 10.1103/PhysRevLett.78.1396. ADS, Google Scholar
- Acc. Chem. Res. 21, 261 (1988), DOI: 10.1021/ar00151a002. Web of Science, Google Scholar
- J. Org. Chem. 341, 39 (1988). Web of Science, Google Scholar
- J. Chem. Phys. 116, 1760 (2002), DOI: 10.1063/1.1430255. Web of Science, ADS, Google Scholar
- J. Appl. Phys. 89, 2756 (2001), DOI: 10.1063/1.1324681. Web of Science, ADS, Google Scholar
- These kind of calculations were done using the ESPRESSO package: S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, http://www.pwscf.org . Google Scholar
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven, K. N. Kudin, and J. C. Burant et al., Gaussian 03, Revision B.01 (Gaussian, Inc., Pittsburgh PA, 2003) . Google Scholar
- J. Chem. Phys. 93, 8452 (1990), DOI: 10.1063/1.459283. Web of Science, ADS, Google Scholar
- J. Appl. Phys. 102, 023708 (2007). Web of Science, Google Scholar
- J. Organomet. Chem. 617, 81 (2001). Web of Science, Google Scholar
- J. Organomet. Chem. 591, 148 (1999), DOI: 10.1016/S0022-328X(99)00409-X. Web of Science, Google Scholar
- S. A. Cohenne, P. R. Auburn and J. E. Barcaw, J. Am. Chem. Soc. 105 (1983) 1136; A. N. Andriotis, M. Menon and G. E. Froudakis, Phys. Rev. B 62 (2000) 9867 . Google Scholar
- Inorg. Chem. 39, 3192 (2000), DOI: 10.1021/ic991144l. Web of Science, Google Scholar
- J. Organomet. Chem. 601, 93 (2000), DOI: 10.1016/S0022-328X(00)00040-1. Web of Science, Google Scholar
- Chem. Phys. Lett. 317, 444 (2000), DOI: 10.1016/S0009-2614(99)01384-6. Web of Science, ADS, Google Scholar
- Phys. Rev. B. 70, 233202 (2004), DOI: 10.1103/PhysRevB.70.233202. Web of Science, ADS, Google Scholar
- Phys. Rev. B 68, 033102 (2003), DOI: 10.1103/PhysRevB.68.033102. Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Boost your collection with these New Books in Condensed Matter Physics today! |