World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Lattice-Gas Theory of Collective Diffusion in Adsorbed Layers

    A general theory for collective diffusion in interacting lattice-gas models is presented. The theory is based on the description of the kinetics in the lattice gas by a master equation. A formal solution of the master equation is obtained using the projection-operator technique, which gives an expression for the relevant correlation functions in terms of continued fractions. In particular, an expression for the collective dynamic structure factor Sc is derived. The collective diffusion coefficient Dc is obtained from Sc by the Kubo hydrodynamic limit. If memory effects are neglected (Darken approximation), it turns out that Dc can be expressed as the ratio of the average jump rate <w> and of the zero-wavevector static structure factor S(0). The latter is directly proportional to the isothermal compressibility of the system, whereas <w> is expressed in terms of the multisite static correlation functions gn. The theory is applied to two-dimensional lattice systems as models of adsorbates on crystal surfaces. Three examples are considered. First, the case of nearest-neighbour interactions on a square lattice (both repulsive and attractive). Here, the theoretical results for Dc are compared to those of Monte Carlo simulations. Second, a model with repulsive interactions on the triangular lattice. This model is applied to NH3 adsorbed on Re(0001) and the calculations are compared to experimental data. Third, a model for oxygen on W(110). In this case, the complete dynamic structure factor is calculated and the width of the quasi-elastic peak is studied. In the third example the gn are calculated by means of the discretized version of a classical equation for the structure of liquids (the Crossover Integral Equation), whereas in the other examples they are computed using the Cluster Variation Method.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!