A mixed clustering coefficient centrality for identifying essential proteins
Abstract
Essential protein plays a crucial role in the process of cell life. The identification of essential proteins not only promotes the development of drug target technology, but also contributes to the mechanism of biological evolution. There are plenty of scholars who pay attention to discover essential proteins according to the topological structure of protein network and biological information. The accuracy of protein recognition still demands to be improved. In this paper, we propose a method which integrates the clustering coefficient in protein complexes and topological properties to determine the essentiality of proteins. First, we give the definition of In-clustering coefficient (IC) to describe the properties of protein complexes. Then we propose a new method, complex edge and node clustering (CENC) coefficient, to identify essential proteins. Different Protein–Protein Interaction (PPI) networks of Saccharomyces cerevisiae, MIPS and DIP are used as experimental materials. Through some experiments of logistic regression model, the results show that the method of CENC can promote the ability of recognizing essential proteins by comparing with the existing methods DC, BC, EC, SC, LAC, NC and the recent UC method.
References
- 1. , Science 296, 750 (2002). Web of Science, ADS, Google Scholar
- 2. , IEEE/ACM Trans. Comput. Biol. Bioinf. 16, 377 (2017). Web of Science, Google Scholar
- 3. , Science 285, 901 (1999). Web of Science, Google Scholar
- 4. , PLoS One 9, e108716 (2014). Web of Science, ADS, Google Scholar
- 5. , Mol. Microbiol. 50, 167 (2003). Web of Science, Google Scholar
- 6. , Immunol. Cell Biol. 83, 217 (2005). Web of Science, Google Scholar
- 7. , Proteomics 6, 35 (2006). Web of Science, Google Scholar
- 8. , BMC Syst. Biol. 6, 87 (2012). Web of Science, Google Scholar
- 9. , Nature 418, 387 (2002). Web of Science, ADS, Google Scholar
- 10. , Nature 411, 41 (2001). Web of Science, ADS, Google Scholar
- 11. , IEEE Trans. Nanobiosci. 13, 415 (2014). Web of Science, Google Scholar
- 12. , Mol. Biol. Evol. 22, 803 (2005). Web of Science, Google Scholar
- 13. , Sociometry 40, 35 (1977). Web of Science, Google Scholar
- 14. , J. Theor. Biol. 447, 65 (2018). Web of Science, ADS, Google Scholar
- 15. , J. Theor. Biol. 223, 45 (2003). Web of Science, ADS, Google Scholar
- 16. , PLoS Comput. Biol. 2, e88 (2006). Web of Science, ADS, Google Scholar
- 17. , J. Proteome Res. 8, 1925 (2009). Web of Science, Google Scholar
- 18. , Trends Genet. 23, 375 (2007). Web of Science, Google Scholar
- 19. , Phys. Rev. E 71, 1 (2005). Web of Science, Google Scholar
- 20. , Comput. Biol. Chem. 35, 143 (2011). Web of Science, Google Scholar
- 21. , Am. J. Soc. 92, 1170 (1987). Web of Science, Google Scholar
- 22. , Phys. A Stat. Mech. Appl. 453, 290 (2016). Web of Science, Google Scholar
- 23. , Proc. Nat. Acad. Sci. USA 101, 2658 (2003). Web of Science, ADS, Google Scholar
- 24. , IEEE Int. Conf. Bioinformatics and Biomedicine (IEEE, 2014). Google Scholar
- 25. , IEEE/ACM Trans. Comput. Biol. Bioinf. 9, 1070 (2012). Web of Science, Google Scholar
- 26. , Biosystems 127, 67 (2015). Web of Science, Google Scholar
- 27. , Soc Netw. 11, 1 (1989). Web of Science, Google Scholar
- 28. , IEEE/ACM Trans. Comput. Biol. Bioinf. (2018). Google Scholar
- 29. , J. Theor. Biol. 480, 274 (2019). Web of Science, ADS, Google Scholar
- 30. , BMC Bioinf. 8, 236 (2007). Web of Science, Google Scholar
- 31. , EEE/ACM Trans. Comput. Biol. Bioinf. 14, 370 (2017). Web of Science, Google Scholar
- 32. , J. Central South Univ. 44, 1024 (2013). Google Scholar
- 33. , Knowl. Based Syst. 151, 136 (2018). Web of Science, Google Scholar
- 34. , Nucleic Acids Res. 30, 303 (2002). Web of Science, Google Scholar
- 35. , Nucleic Acids Res. 37, D455 (2009). Web of Science, Google Scholar
- 36. , Trans. Comput. Biol. Bioinf. 9, 1070 (2012). Web of Science, Google Scholar
- 37. , Int. Conf. Research in Computational Molecular Biology (Springer-Verlag, 2008). Google Scholar
- 38. , Nucleic Acids Res. 37, 825 (2009). Web of Science, Google Scholar
- 39. , Proteomics 7, 944 (2010). Web of Science, Google Scholar
- 40. , BMC Microbiol. 9, 1 (2009). Web of Science, Google Scholar
- 41. , Nucleic Acids Res. 26, 73 (1998). Web of Science, Google Scholar
- 42. , IEEE/ACM Trans. Comput. Biol. Bioinf. 12, 372 (2015). Web of Science, Google Scholar
- 43. , Proc. 37th Chinese Control Conf. (2018). Google Scholar
- 44. , PLoS One 10, e0131418 (2015). Web of Science, Google Scholar
- 45. , J. Biomed. Biotechnol. 2005, 96 (2014). Google Scholar
- 46. , Nucleic Acids Res. 34, 169 (2004). Web of Science, Google Scholar
- 47. , Mol. Biol. Evol. (2015). Google Scholar
- 48. , Pattern Recognit. 30, 1145 (1996). Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|