World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Stochastic stability of invariant measures: The 2D Euler equation

    In finite-dimensional dissipative dynamical systems, stochastic stability provides the selection of the physically relevant measures. That this might also apply to systems defined by partial differential equations, both dissipative and conservative, is the inspiration for this work. As an example, the 2D Euler equation is studied. Among other results this study suggests that the coherent structures observed in 2D hydrodynamics are associated with configurations that maximize stochastically stable measures uniquely determined by the boundary conditions in dynamical space.

    PACS: 05.40.Ca, 05.90.+m, 64.90.+b

    References

    • 1. Ya. G. Sinai, Gibbs measures in ergodic theory, Russian Mathematical Surveys 27, 21 (1972). Crossref, ADSGoogle Scholar
    • 2. R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Springer Lecture Notes in Mathematical, Vol. 470 (Springer-Verlag, Berlin, Heidelberg, 1975). CrossrefGoogle Scholar
    • 3. D. Ruelle, Amer. J. Math. 98, 619 (1976). Crossref, ISIGoogle Scholar
    • 4. D. Ruelle, Chaotic Evolution and Strange Attractors (Cambridge University Press, 1989). CrossrefGoogle Scholar
    • 5. A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, 1995). CrossrefGoogle Scholar
    • 6. L. Barreira and Y. Pesin, Smooth ergodic theory and nonuniformly hyperbolic dynamics, in Handbook of Dynamical Systems 1B, Chap. 2, eds.  B. HasselblattA.  Katok (Elsevier, Amsterdam, 2006), pp. 57–264. CrossrefGoogle Scholar
    • 7. Y. I. Kifer, Mat. URSS Izv. 8, 1083 (1974). CrossrefGoogle Scholar
    • 8. L.-S. Young, Ergodic Theory Dynam. Syst. 6 311 (1986). Crossref, ISIGoogle Scholar
    • 9. Y. I. Kifer, Random Perturbations of Dynamical Systems (Birkhäuser, 1988). CrossrefGoogle Scholar
    • 10. J. F. Alves and M. Viana, Ergodic Theory Dynamical Syst. 22, 1 (2002). Crossref, ISIGoogle Scholar
    • 11. M. Benedicks and M. Viana, Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 713 (2006). Crossref, ADSGoogle Scholar
    • 12. J. F. Alves, M. Carvalho and J. M. Freitas, Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 595 (2010). Crossref, ADSGoogle Scholar
    • 13. F. Bouchet and A. Venaille, Phys. Rep. 515, 227 (2012). Crossref, ISI, ADSGoogle Scholar
    • 14. F. Bouchet and M. Corvellec, J. Stat. Mechanics: Theory and Experiment, P08021 (2010). CrossrefGoogle Scholar
    • 15. L. Onsager, Nuovo Cimento Supl. 6, 249 (1949). CrossrefGoogle Scholar
    • 16. R. Robert, J. Stat. Phys. 65, 531 (1991). Crossref, ADSGoogle Scholar
    • 17. R. Robert and J. Sommeria, J. Fluid Mech. 229, 291 (1991). Crossref, ISI, ADSGoogle Scholar
    • 18. E. Caglioti et al., Commun. Math. Phys. 174, 229 (1995). Crossref, ISI, ADSGoogle Scholar
    • 19. R. Robert, Commun. Math. Phys. 212, 245 (2000). Crossref, ADSGoogle Scholar
    • 20. S. Albeverio and A. B. Cruzeiro, Commun. Math. Phys. 129, 431 (1990). Crossref, ISI, ADSGoogle Scholar
    • 21. F. Cipriano, Commun. Math. Phys. 201, 139 (1999). Crossref, ISI, ADSGoogle Scholar
    • 22. H. Airault and H. Ouerdiane, Invariant Measure for Some Differential Operators and Unitarizing Measure for the Representation of a Lie Group, Examples in Finite Dimension, Vol. 96 (Banach Center Publications, 2012), pp. 11–34. Google Scholar
    • 23. S. Albeverio, M. Ribeiro de Faria and R. Hoegh-Krohn, J. Stat. Phys. 20, 585 (1979). Crossref, ISI, ADSGoogle Scholar
    • 24. P. J. Morrison, Rev. Mod. Phys. 70, 467 (1998). Crossref, ISI, ADSGoogle Scholar
    • 25. R. Salmon, Lectures on Geophysical Fluid Dynamics (Oxford Univ. Press, 1998). Google Scholar
    • 26. S. B. Kuksin, J. Stat. Phys. 115, 469 (2004). Crossref, ADSGoogle Scholar
    • 27. S. Albeverio and B. Ferrario, Some methods of infinite dimensional analysis in hydrodynamics: An introduction, in SPDE in Hydrodynamic: Recent Progress and Prospects, eds.  G. Da PratoM. Röckner (Springer, Berlin, 2008). CrossrefGoogle Scholar
    • 28. M. G. Crandall and P. L. Lions, Trans. Amer. Math. Soc. 277, 1 (1983). Crossref, ISIGoogle Scholar
    • 29. M. G. Crandall, L. C. Evans and P. L. Lions, Trans. Amer. Math. Soc. 282, 487 (1984). Crossref, ISIGoogle Scholar
    • 30. P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations (Pitman, London, 1982). Google Scholar
    • 31. L. C. Evans, Partial Differential Equations (American Mathematical Society, Providence, RI, 2010). CrossrefGoogle Scholar
    • 32. S. Albeverio, V. Bogachev and M. Röckner, Comm. Pure Appl. Math. 52, 325 (1999). Crossref, ISIGoogle Scholar
    • 33. A. Friedman, Stochastic Differential Equations and Applications, Vol. 1 (Academic Press, New York, 1975). Google Scholar
    • 34. M. G. Crandall and P. L. Lions, J. Funct. Anal. 62, 379 (1985); 65, 368 (1986); 68, 214 (1986); 90, 237 (1990); 97, 417 (1991); 125, 111 (1994). Google Scholar
    • 35. J. P. Bizarro, L. Venâncio and R. Vilela Mendes, A Stable Semi-Implicit Algorithm, arXiv:1905.04520. Google Scholar
    • 36. R. Kraichnan and D. Montgomery, Rep. Prog. Phys. 43, 547 (1980). Crossref, ISI, ADSGoogle Scholar
    • 37. G. Benfatto, P. Picco and M. Pulvirenti, J. Stat. Phys. 46, 729 (1987). Crossref, ADSGoogle Scholar
    • 38. C. Sire and P.-H. Chavanis, Phys. Rev. E 61, 6644 (2000). Crossref, ADSGoogle Scholar
    • 39. X. Leoncini et al., Eur. Phys. J. B 82, 173 (2011). Crossref, ADSGoogle Scholar
    Published: 18 July 2019
    You currently do not have access to the full text article.

    Recommend the journal to your library today!