Stochastic stability of invariant measures: The 2D Euler equation
Abstract
In finite-dimensional dissipative dynamical systems, stochastic stability provides the selection of the physically relevant measures. That this might also apply to systems defined by partial differential equations, both dissipative and conservative, is the inspiration for this work. As an example, the 2D Euler equation is studied. Among other results this study suggests that the coherent structures observed in 2D hydrodynamics are associated with configurations that maximize stochastically stable measures uniquely determined by the boundary conditions in dynamical space.
References
- 1. , Gibbs measures in ergodic theory, Russian Mathematical Surveys 27, 21 (1972). Crossref, ADS, Google Scholar
- 2. , Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,
Springer Lecture Notes in Mathematical , Vol. 470 (Springer-Verlag, Berlin, Heidelberg, 1975). Crossref, Google Scholar - 3. , Amer. J. Math. 98, 619 (1976). Crossref, ISI, Google Scholar
- 4. , Chaotic Evolution and Strange Attractors (Cambridge University Press, 1989). Crossref, Google Scholar
- 5. , Introduction to the Modern Theory of Dynamical Systems (Cambridge Univ. Press, 1995). Crossref, Google Scholar
- 6. ,
Smooth ergodic theory and nonuniformly hyperbolic dynamics , in Handbook of Dynamical Systems 1B,Chap. 2 , eds. B. HasselblattA. Katok (Elsevier, Amsterdam, 2006), pp. 57–264. Crossref, Google Scholar - 7. , Mat. URSS Izv. 8, 1083 (1974). Crossref, Google Scholar
- 8. , Ergodic Theory Dynam. Syst. 6 311 (1986). Crossref, ISI, Google Scholar
- 9. , Random Perturbations of Dynamical Systems (Birkhäuser, 1988). Crossref, Google Scholar
- 10. , Ergodic Theory Dynamical Syst. 22, 1 (2002). Crossref, ISI, Google Scholar
- 11. , Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 713 (2006). Crossref, ADS, Google Scholar
- 12. , Ann. Inst. H. Poincaré Anal. Non Linéaire 27, 595 (2010). Crossref, ADS, Google Scholar
- 13. , Phys. Rep. 515, 227 (2012). Crossref, ISI, ADS, Google Scholar
- 14. , J. Stat. Mechanics: Theory and Experiment, P08021 (2010). Crossref, Google Scholar
- 15. , Nuovo Cimento Supl. 6, 249 (1949). Crossref, Google Scholar
- 16. , J. Stat. Phys. 65, 531 (1991). Crossref, ADS, Google Scholar
- 17. , J. Fluid Mech. 229, 291 (1991). Crossref, ISI, ADS, Google Scholar
- 18. , Commun. Math. Phys. 174, 229 (1995). Crossref, ISI, ADS, Google Scholar
- 19. , Commun. Math. Phys. 212, 245 (2000). Crossref, ADS, Google Scholar
- 20. , Commun. Math. Phys. 129, 431 (1990). Crossref, ISI, ADS, Google Scholar
- 21. , Commun. Math. Phys. 201, 139 (1999). Crossref, ISI, ADS, Google Scholar
- 22. , Invariant Measure for Some Differential Operators and Unitarizing Measure for the Representation of a Lie Group,
Examples in Finite Dimension , Vol. 96 (Banach Center Publications, 2012), pp. 11–34. Google Scholar - 23. , J. Stat. Phys. 20, 585 (1979). Crossref, ISI, ADS, Google Scholar
- 24. , Rev. Mod. Phys. 70, 467 (1998). Crossref, ISI, ADS, Google Scholar
- 25. , Lectures on Geophysical Fluid Dynamics (Oxford Univ. Press, 1998). Google Scholar
- 26. , J. Stat. Phys. 115, 469 (2004). Crossref, ADS, Google Scholar
- 27. ,
Some methods of infinite dimensional analysis in hydrodynamics: An introduction , in SPDE in Hydrodynamic: Recent Progress and Prospects, eds. G. Da PratoM. Röckner (Springer, Berlin, 2008). Crossref, Google Scholar - 28. , Trans. Amer. Math. Soc. 277, 1 (1983). Crossref, ISI, Google Scholar
- 29. , Trans. Amer. Math. Soc. 282, 487 (1984). Crossref, ISI, Google Scholar
- 30. , Generalized Solutions of Hamilton-Jacobi Equations (Pitman, London, 1982). Google Scholar
- 31. , Partial Differential Equations (American Mathematical Society, Providence, RI, 2010). Crossref, Google Scholar
- 32. , Comm. Pure Appl. Math. 52, 325 (1999). Crossref, ISI, Google Scholar
- 33. , Stochastic Differential Equations and Applications, Vol. 1 (Academic Press, New York, 1975). Google Scholar
- 34. M. G. Crandall and P. L. Lions, J. Funct. Anal. 62, 379 (1985); 65, 368 (1986); 68, 214 (1986); 90, 237 (1990); 97, 417 (1991); 125, 111 (1994). Google Scholar
- 35. J. P. Bizarro, L. Venâncio and R. Vilela Mendes, A Stable Semi-Implicit Algorithm, arXiv:1905.04520. Google Scholar
- 36. , Rep. Prog. Phys. 43, 547 (1980). Crossref, ISI, ADS, Google Scholar
- 37. , J. Stat. Phys. 46, 729 (1987). Crossref, ADS, Google Scholar
- 38. , Phys. Rev. E 61, 6644 (2000). Crossref, ADS, Google Scholar
- 39. , Eur. Phys. J. B 82, 173 (2011). Crossref, ADS, Google Scholar
You currently do not have access to the full text article. |
---|