COSMIC-RAY-DRIVEN REACTION AND GREENHOUSE EFFECT OF HALOGENATED MOLECULES: CULPRITS FOR ATMOSPHERIC OZONE DEPLETION AND GLOBAL CLIMATE CHANGE
Abstract
This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 ~ 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850–1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96–0.97 is found between corrected or uncorrected global surface temperature and total amount of stratospheric halogenated gases during 1970–2012. Furthermore, a new theoretical calculation on the greenhouse effect of halogenated gases shows that they (mainly CFCs) could alone result in the global surface temperature rise of ~0.6°C in 1970–2002. These results provide solid evidence that recent global warming was indeed caused by the greenhouse effect of anthropogenic halogenated gases. Thus, a slow reversal of global temperature to the 1950 value is predicted for coming 5 ~ 7 decades. It is also expected that the global sea level will continue to rise in coming 1 ~ 2 decades until the effect of the global temperature recovery dominates over that of the polar O3 hole recovery; after that, both will drop concurrently. All the observed, analytical and theoretical results presented lead to a convincing conclusion that both the CRE mechanism and the CFC-warming mechanism not only provide new fundamental understandings of the O3 hole and global climate change but have superior predictive capabilities, compared with the conventional models.
References
- Electron–Molecule Interactions and Their Applications 1 , ed.
L. G. Christophorou ( Academic Press , Orlando , 1984 ) . Google Scholar , - Phys. Rev. Lett. 67, 2395 (1991), DOI: 10.1103/PhysRevLett.67.2395. Crossref, Web of Science, ADS, Google Scholar
- Ann. Rev. Phys. Chem. 47, 527 (1996), DOI: 10.1146/annurev.physchem.47.1.527. Crossref, Web of Science, ADS, Google Scholar
-
R. E. Johnson , Physics and Chemistry in Space Planetology 19 ( Springer-Verlag , Berlin , 1990 ) . Google Scholar - Rev. Mod. Phys. 65, 599 (1993), DOI: 10.1103/RevModPhys.65.599. Crossref, Web of Science, ADS, Google Scholar
- Proc. Natl. Acad. Sci. USA 97, 14052 (2000), DOI: 10.1073/pnas.250483297. Crossref, Web of Science, ADS, Google Scholar
- Phys. Rep. 487, 141 (2010), DOI: 10.1016/j.physrep.2009.12.002. Crossref, Web of Science, ADS, Google Scholar
- Mutat. Res.: Rev. Mutat. Res. 704, 190 (2010), DOI: 10.1016/j.mrrev.2010.01.012. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 111, 2861 (1999), DOI: 10.1063/1.479613. Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 82, 4122 (1999), DOI: 10.1103/PhysRevLett.82.4122. Crossref, Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 87, 078501 (2001), DOI: 10.1103/PhysRevLett.87.078501. Crossref, Web of Science, Google Scholar
- Phys. Rev. Lett. 102, 118501 (2009), DOI: 10.1103/PhysRevLett.102.118501. Crossref, Web of Science, Google Scholar
- J. Am. Chem. Soc. 131, 11320 (2009), DOI: 10.1021/ja902675g. Crossref, Web of Science, Google Scholar
- Proc. Natl. Acad. Sci. USA 108, 11778 (2011), DOI: 10.1073/pnas.1104367108. Crossref, Web of Science, ADS, Google Scholar
- Surf. Sci. 451, 238 (2000), DOI: 10.1016/S0039-6028(00)00037-6. Crossref, Web of Science, ADS, Google Scholar
- J. Phys. Chem. B 105, 2779 (2001), DOI: 10.1021/jp003161y. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 120, 968 (2004), DOI: 10.1063/1.1630296. Crossref, Web of Science, ADS, Google Scholar
- Phys. Rev. B 63, 153403 (2001), DOI: 10.1103/PhysRevB.63.153403. Crossref, Web of Science, ADS, Google Scholar
- J. Chem. Phys. 115, 5711 (2001), DOI: 10.1063/1.1406499. Crossref, Web of Science, ADS, Google Scholar
- J. Chem. Phys. 120, 2434 (2004), DOI: 10.1063/1.1637335. Crossref, Web of Science, ADS, Google Scholar
- J. Am. Chem. Soc. 128, 3500 (2006), DOI: 10.1021/ja058323o. Crossref, Web of Science, Google Scholar
- Surf. Sci. 602, 2706 (2008), DOI: 10.1016/j.susc.2008.06.025. Crossref, Web of Science, ADS, Google Scholar
- Phys. Chem. Chem. Phys. 10, 2200 (2008), DOI: 10.1039/b718017a. Crossref, Web of Science, Google Scholar
- Faraday Discuss. 141, 293 (2009), DOI: 10.1039/b805198d. Crossref, Web of Science, ADS, Google Scholar
- Phys. Chem. Chem. Phys. 12, 13034 (2010), DOI: 10.1039/c0cp00439a. Crossref, Web of Science, Google Scholar
- Acc. Chem. Res. 45, 131 (2012). Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 136, 184301 (2012), DOI: 10.1063/1.4706604. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 124, 241102 (2006), DOI: 10.1063/1.2217014. Crossref, Web of Science, ADS, Google Scholar
- Angew. Chem. Intl. Ed. 46, 6316 (2007), DOI: 10.1002/anie.200701559. Crossref, Web of Science, Google Scholar
- J. Med. Chem. 50, 2601 (2007), DOI: 10.1021/jm061416b. Crossref, Web of Science, Google Scholar
- Mol. Pharmaceutics 4, 624 (2007), DOI: 10.1021/mp070040a. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 128, 041102 (2008), DOI: 10.1063/1.2836749. Crossref, Web of Science, Google Scholar
- Phys. Chem. Chem. Phys. 10, 4463 (2008), DOI: 10.1039/b806287k. Crossref, Web of Science, Google Scholar
- J. Am. Chem. Soc. 132, 14710 (2010), DOI: 10.1021/ja102883a. Crossref, Web of Science, Google Scholar
- J. Cosmology 8, 1846 (2010). Google Scholar
- Atmos. Environ. 45, 6658 (2011), DOI: 10.1016/j.atmosenv.2011.08.069. Crossref, Web of Science, ADS, Google Scholar
- Science 189, 457 (1975), DOI: 10.1126/science.189.4201.457. Crossref, Web of Science, ADS, Google Scholar
- Science 192, 555 (1976), DOI: 10.1126/science.192.4239.555. Crossref, Web of Science, ADS, Google Scholar
- Science 195, 287 (1977), DOI: 10.1126/science.195.4275.287. Crossref, Web of Science, ADS, Google Scholar
- J. Geomagnet. Geoelectri. 43, S637 (1991), DOI: 10.5636/jgg.43.Supplement2_637. Crossref, Google Scholar
- Adv. Space Res. 27, 1993 (2001), DOI: 10.1016/S0273-1177(01)00296-4. Crossref, Web of Science, Google Scholar
- Astrophys. J. 585, 1169 (2003), DOI: 10.1086/346127. Crossref, Web of Science, ADS, Google Scholar
- Astrophys. J. 622, L153 (2005), DOI: 10.1086/429799. Crossref, Web of Science, Google Scholar
- J. Geophys. Res. 113, E10007 (2008), DOI: 10.1029/2008JE003206. Crossref, Web of Science, Google Scholar
- J. Basic Appl. Sci. 8, 370 (2012). Web of Science, Google Scholar
- C. R. Beckie, Determining the Polar Cosmic Ray Effect on Cloud Microphysics and the Earth's Ozone Layer, UCGE Reports No. 20356 (The University of Calgary, 2012) . Google Scholar
- Science 192, 1189 (1976), DOI: 10.1126/science.192.4245.1189. Crossref, Web of Science, ADS, Google Scholar
- Nature 329, 142 (1987), DOI: 10.1038/329142a0. Crossref, Web of Science, ADS, Google Scholar
- Science 254, 698 (1991), DOI: 10.1126/science.254.5032.698. Crossref, Web of Science, ADS, Google Scholar
- J. Geophys. Res. 98, 18895 (1993), DOI: 10.1029/93JA01944. Crossref, Web of Science, Google Scholar
- Science 277, 1963 (1997), DOI: 10.1126/science.277.5334.1963. Crossref, Web of Science, Google Scholar
- J. Geophys. Res. 108, 1200 (2003), DOI: 10.1029/2002JA009753. Google Scholar
- Nature 443, 161 (2006), DOI: 10.1038/nature05072. Crossref, Web of Science, ADS, Google Scholar
- Space Sci. Rev. 125, 53 (2006). Crossref, Web of Science, ADS, Google Scholar
- Proc. R. Soc. A 463, 2447 (2007), DOI: 10.1098/rspa.2007.1880. Crossref, ADS, Google Scholar
- Geophys. Res. Lett. 36, L20101 (2009), DOI: 10.1029/2009GL040707. Crossref, Web of Science, Google Scholar
- Space Sci. Rev. (2011), DOI: 10.1007/s11214-011-9780-1. Google Scholar
- J. Atmos. Sol. Terr. Phys. 59, 1225 (1997), DOI: 10.1016/S1364-6826(97)00001-1. Crossref, Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 81, 5027 (1998), DOI: 10.1103/PhysRevLett.81.5027. Crossref, Web of Science, ADS, Google Scholar
- J. Geophys. Res. 106, 4797 (2001), DOI: 10.1029/2000JD900539. Crossref, Web of Science, ADS, Google Scholar
- Science 298, 1732 (2002), DOI: 10.1126/science.1076964. Crossref, Web of Science, ADS, Google Scholar
- Nature 476, 429 (2011), DOI: 10.1038/nature10343. Crossref, Web of Science, ADS, Google Scholar
- Atmos. Chem. Phys. 4, 1037 (2004). Crossref, Google Scholar
- Annal. Geophys. 23, 675 (2005), DOI: 10.5194/angeo-23-675-2005. Crossref, Web of Science, ADS, Google Scholar
- Nature 249, 810 (1974), DOI: 10.1038/249810a0. Crossref, Web of Science, ADS, Google Scholar
- Nature 315, 207 (1985), DOI: 10.1038/315207a0. Crossref, Web of Science, ADS, Google Scholar
- World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 1994 (Global Ozone Research and Monitoring Project-Report No. 47, Geneva, 1995) . Google Scholar
- World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2006 (Global Ozone Research and Monitoring Project-Report No. 50, Geneva, 2007) . Google Scholar
- World Meteorological Organization (WMO), Scientific Assessment of Ozone Depletion: 2010 (Global Ozone Research and Monitoring Project-Report No. 52, Geneva, 2011) . Google Scholar
- Science 282, 391 (1998), DOI: 10.1126/science.282.5388.391a. Crossref, Web of Science, Google Scholar
- Nature 478, 469 (2011), DOI: 10.1038/nature10556. Crossref, Web of Science, ADS, Google Scholar
- J. Chem. Phys. 48, 1956 (1968), DOI: 10.1063/1.1668997. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 67, 2196 (1977), DOI: 10.1063/1.435107. Crossref, Web of Science, ADS, Google Scholar
- Chem. Phys. 37, 21 (1979), DOI: 10.1016/0301-0104(79)80003-8. Crossref, Web of Science, ADS, Google Scholar
- Chem. Phys. Lett. 65, 434 (1979), DOI: 10.1016/0009-2614(79)80266-3. Crossref, Web of Science, ADS, Google Scholar
- J. Mol. Structure (Theochem) 123, 329 (1985), DOI: 10.1016/0166-1280(85)80175-5. Crossref, Google Scholar
- Top. Curr. Chem. 89, 1 (1980), DOI: 10.1007/3540098259_4. Crossref, Web of Science, Google Scholar
- The Photochemistry of Atmospheres , ed.
J. S. Levine ( Academic Press , Orlando , 1985 ) . Crossref, Google Scholar , - Science 190, 50 (1975), DOI: 10.1126/science.190.4209.50. Crossref, Web of Science, ADS, Google Scholar
- Rev. Geophys. 25, 1441 (1987), DOI: 10.1029/RG025i007p01441. Crossref, Web of Science, ADS, Google Scholar
- Ambio 27, 187 (1998). Web of Science, Google Scholar
- J. Geophys. Res. 90, 12971 (1985), DOI: 10.1029/JD090iD07p12971. Crossref, Web of Science, Google Scholar
- Nature 350, 573 (1991), DOI: 10.1038/350573a0. Crossref, Web of Science, ADS, Google Scholar
- Climate Change 71, 249 (2005), DOI: 10.1007/s10584-005-5955-7. Crossref, Web of Science, ADS, Google Scholar
- IPCC Report, Third Assessment Report: Climate Change (TAR) (2001) . Google Scholar
- IPCC Report, Fourth Assessment Report: Climate Change (AR4) (2007) . Google Scholar
- Phys. Rev. Lett. 103, 228501 (2009). Crossref, Web of Science, Google Scholar
- Atmos. Environ. 45, 3508 (2011). Crossref, Web of Science, ADS, Google Scholar
- Q.-B. Lu, (2012), [physics.ao-ph] , arXiv:1210.1498 . Google Scholar
- Atmos. Environ. 68, 350 (2013). Crossref, Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 89, 219803 (2002), DOI: 10.1103/PhysRevLett.89.219803. Crossref, Web of Science, Google Scholar
- J. Chem. Phys. 129, 027101 (2008). Crossref, Web of Science, Google Scholar
- Nature 360, 221 (1992), DOI: 10.1038/360221a0. Crossref, Web of Science, ADS, Google Scholar
- Nature 392, 589 (1998), DOI: 10.1038/33385. Crossref, Web of Science, ADS, Google Scholar
- J. Quant. Spectrosc. Radiat. Transfer 85, 367 (2004), DOI: 10.1016/S0022-4073(03)00232-2. Crossref, Web of Science, ADS, Google Scholar
- Science 283, 1712 (1999), DOI: 10.1126/science.283.5408.1712. Crossref, Web of Science, ADS, Google Scholar
- J. Geophys. Res. 114, D00I04 (2009). Google Scholar
- Science 334, 916 (2011), DOI: 10.1126/science.1212555. Crossref, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|