THE LUTTINGER LIQUID AND INTEGRABLE MODELS
Abstract
Many fundamental one-dimensional lattice models such as the Heisenberg or the Hubbard model are integrable. For these microscopic models, parameters in the Luttinger liquid theory can often be fixed and parameter-free results at low energies for many physical quantities such as dynamical correlation functions obtained where exact results are still out of reach. Quantum integrable models thus provide an important testing ground for low-energy Luttinger liquid physics. They are, furthermore, also very interesting in their own right and show, for example, peculiar transport and thermalization properties. The consequences of the conservation laws leading to integrability for the structure of the low-energy effective theory have, however, not fully been explored yet. I will discuss the connection between integrability and Luttinger liquid theory here, using the anisotropic Heisenberg model as an example. In particular, I will review the methods which allow to fix free parameters in the Luttinger model with the help of the Bethe ansatz solution. As applications, parameter-free results for the susceptibility in the presence of nonmagnetic impurities, for spin transport, and for the spin-lattice relaxation rate are discussed.
References
- J. Math. Phys. 4, 1154 (1963). Web of Science, ADS, Google Scholar
- J. Math. Phys. 6, 304 (1965). Web of Science, ADS, Google Scholar
- Phys. Rev. B 12, 3908 (1975). Web of Science, ADS, Google Scholar
-
T. Giamarchi , Quantum Physics in One Dimension ( Clarendon Press , Oxford , 2004 ) . Google Scholar - Phys. Rev. 65, 117 (1944). ADS, Google Scholar
- Phys. Rev. Lett. 76, 3212 (1996). Web of Science, ADS, Google Scholar
- Phys. Rev. B 55, 14129 (1997). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 87, 247202 (2001). Web of Science, ADS, Google Scholar
- Phys. Rev. B 53, 5116 (1996). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 98, 137205 (2007). Web of Science, ADS, Google Scholar
- J. Stat. Mech. Theory Exp. P02015 (2008). Google Scholar
- Europhys. Lett. 86, 57004 (2009). Google Scholar
- Phys. Rev. Lett. 103, 216602 (2009). Web of Science, ADS, Google Scholar
- Phys. Rev. B 83, 035115 (2011). Web of Science, Google Scholar
- Phys. Rev. 130, 1605 (1963). Web of Science, ADS, Google Scholar
- Nature 440, 900 (2006). Web of Science, ADS, Google Scholar
- Phys. Rev. 150, 321 (1966). Web of Science, ADS, Google Scholar
- J. Stat. Mech. Theory Exp. P02023 (2011). Google Scholar
-
F. H. L. Essler , The One-Dimensional Hubbard Model ( Cambridge University Press , Cambridge , 2005 ) . Google Scholar - Phys. Rev. B 55, 11029 (1997). Web of Science, Google Scholar
- Physica 43, 533 (1969). Web of Science, ADS, Google Scholar
- Physica 51, 277 (1971). Web of Science, ADS, Google Scholar
- Phys. Rev. B 75, 245104 (2007). Web of Science, ADS, Google Scholar
- Phys. Rev. A 43, 2046 (1991). Web of Science, Google Scholar
- Z. Phys. 71, 205 (1931). ADS, Google Scholar
- J. Phys. A 21, 2375 (1988). ADS, Google Scholar
- J. Phys. A 20, 6397 (1987). ADS, Google Scholar
-
M. Takahashi , Thermodynamics of One-Dimensional Solvable Problems ( Cambridge University Press , Cambridge, UK , 1999 ) . Google Scholar - Phys. Rev. B 46, 10866 (1992). Web of Science, Google Scholar
- J. Stat. Mech. Theory Exp. P08022 (2007). Google Scholar
- Nucl. Phys. B 522, 533 (1998). Web of Science, ADS, Google Scholar
- J. Phys. A: Math. Gen. 38, 5957 (2005). Google Scholar
- J. Stat. Mech. Theory Exp. P01007 (2006). Google Scholar
- Nucl. Phys. B 654, 323 (2003). Web of Science, ADS, Google Scholar
- Nucl. Phys. B 554, 647 (1999). Web of Science, ADS, Google Scholar
- Nucl. Phys. B 567, 554 (2000). Web of Science, ADS, Google Scholar
- J. Stat. Mech. Theory Exp. P05028 (2011). Google Scholar
- Phys. Rev. Lett. 96, 257202 (2006). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 92, 037206 (2004). Web of Science, Google Scholar
- Phys. Rev. B 62, 367 (2000). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 75, 934 (1995). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 88, 077203 (2002). Web of Science, Google Scholar
- Phys. Rev. Lett. 82, 1764 (1999). Web of Science, ADS, Google Scholar
- Phys. Rev. B 66, 140406(R) (2002). Web of Science, Google Scholar
- Phys. Rev. Lett. 65, 243 (1990). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 106, 217206 (2011). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 108, 227206 (2012). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 96, 247203 (2006). Web of Science, ADS, Google Scholar
- Phys. Rev. B 65, 134410 (2002). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 85, 1092 (2000). Web of Science, Google Scholar
- Science 323, 228 (2009). Web of Science, Google Scholar
- Phys. Rev. Lett. 100, 027206 (2008). Web of Science, Google Scholar
- A. Imambekov, T. L. Schmidt and L. I. Glazman, (2011) , arXiv:1110.1374 . Google Scholar
You currently do not have access to the full text article. |
---|