World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ELECTRONIC PRINCIPLES OF SOME TRENDS IN PROPERTIES OF METALLIC HYDRIDES

    Due to their extensive present, important and versatile potential applications, metal hydrides (MH) are among the most investigated solid-state systems. Theoretical, numerical and experimental studies have provided a considerable knowledge about their structure and properties, but in spite of that, the basic electronic principles of various interactions present in MH have not yet been completely resolved. Even in the simplest MH, i.e. alkali hydrides (Alk-H), some trends in physical properties, and especially their deviations, are not well understood. Similar doubts exist for the alkaline-earth hydride (AlkE-H) series, and are even more pronounced for complex systems, like transition metal-doped AlkE-H, alanates and borohydrides. This work is an attempt of explaining some trends in the physical properties of Alk-H and AlkE-H, employing the Bader analysis of the charge distribution topology evaluated by first-principle all-electron calculations. These results are related to some variables commonly used in the explanation of experimental and calculated results, and are also accompanied by simple tight-binding estimations. Such an approach provides a valuable insight in the characteristics of M-H and H-H interactions in these hydrides, and their possible changes along with external parameters, like temperature, pressure, defect or impurity introduction. The knowledge of these basic interactions and processes taking place in simple MH are essential for the design and optimisation of complex MH-systems interesting for practical hydrogen storage applications.

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!