THREE SCHEMES TO SYNCHRONIZE CHAOTIC FRACTIONAL-ORDER RUCKLIDGE SYSTEMS
Abstract
The synchronization problem of chaotic fractional-order Rucklidge systems is studied both theoretically and numerically. Three different synchronization schemes based on the Pecora–Carroll principle, the linear feedback control and the bidirectional coupling are proposed to realize chaotic synchronization. It is shown that such schemes can achieve the same aim for the same set of system parameter values (including fractional orders). This provides an alternate choice for applications of fractional-order dynamical systems in engineering fields.
References
-
P. L. Butzer and U. Westphal , An Introduction to Fractional Calculus ( World Scientific , Singapore , 2000 ) . Link, Google Scholar -
S. M. Kenneth and R. Bertram , An Introduction to the Fractional Calculus and Fractional Differential Equations ( Wiley-Interscience , New York , 1993 ) . Google Scholar -
B. Ross , Proc. Int. Conf. New Haven ,Lecture Notes in Mathematics ( Springer-Verlag , Berlin, Germany , 1974 ) . Google Scholar -
R. Hilfer (ed.) , Applications of Fractional Calculus in Physics ( World Scientific , New Jersey , 2001 ) . Google Scholar P. Arena , Proceedings of ECCTD (Technical University of Budapest, Budapest, 1997) p. 1259. Google Scholar- IEEE Trans. Circuits Syst. I 42, 485 (1995), DOI: 10.1109/81.404062. Crossref, Google Scholar
- Chaos, Solitons and Fractals 22, 443 (2004), DOI: 10.1016/j.chaos.2004.02.013. Crossref, ISI, ADS, Google Scholar
- Physica A 353, 61 (2005), DOI: 10.1016/j.physa.2005.01.021. Crossref, ISI, ADS, Google Scholar
D. Matignon , Computational Engineering in Systems and Application Multiconference 2 (Lille, France, 1996) p. 963. Google Scholar- Chaos, Solitons and Fractals 26, 913 (2005). Crossref, ISI, ADS, Google Scholar
- Int. J. Bifur. Chaos 10, 2717 (2000), DOI: 10.1142/S0218127400001778. Link, ISI, Google Scholar
- Chaos, Solitons and Fractals 12, 1199 (2001), DOI: 10.1016/S0960-0779(00)00089-8. Crossref, ISI, ADS, Google Scholar
- J. Cricuits Syst. Comput. 3, 93 (1993), DOI: 10.1142/S0218126693000071. Link, ISI, Google Scholar
- Phys. Lett. A 301, 231 (2002), DOI: 10.1016/S0375-9601(02)00973-8. Crossref, ISI, ADS, Google Scholar
- The Geophysical J. of the Royal Astronomical Society 13, 529 (1967). Crossref, ADS, Google Scholar
- J. Fluid Mech. 237, 209 (1992), DOI: 10.1017/S0022112092003392. Crossref, ISI, ADS, Google Scholar
- Phys. Rev. Lett. 64, 821 (1990), DOI: 10.1103/PhysRevLett.64.821. Crossref, ISI, ADS, Google Scholar
- Phys. Lett. A 278, 191 (2001), DOI: 10.1016/S0375-9601(00)00777-5. Crossref, ISI, ADS, Google Scholar
- J. Phys. Soc. Jpn. 74, 1645 (2005), DOI: 10.1143/JPSJ.74.1645. Crossref, ADS, Google Scholar
- Physica A 360, 171 (2006), DOI: 10.1016/j.physa.2005.06.078. Crossref, ISI, ADS, Google Scholar
| You currently do not have access to the full text article. |
|---|


