World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ASYNCHRONOUS RANDOM BOOLEAN NETWORK MODEL WITH VARIABLE NUMBER OF PARENTS BASED ON ELEMENTARY CELLULAR AUTOMATA RULE 126

    https://doi.org/10.1142/S0217979206033656Cited by:3 (Source: Crossref)

    A Boolean network with N nodes, each node's state at time t being determined by a certain number of parent nodes, which can vary from one node to another, is considered. This is a generalization of previous results obtained for a constant number of parent nodes, by Matache and Heidel in "Asynchronous Random Boolean Network Model Based on Elementary Cellular Automata Rule 126", Phys. Rev. E71, 026 232, 2005. The nodes, with randomly assigned neighborhoods, are updated based on various asynchronous schemes. The Boolean rule is a generalization of rule 126 of elementary cellular automata, and is assumed to be the same for all the nodes. We provide a model for the probability of finding a node in state 1 at a time t for the class of generalized asynchronous random Boolean networks (GARBN) in which a random number of nodes can be updated at each time point. We generate consecutive states of the network for both the real system and the models under the various schemes, and use simulation algorithms to show that the results match well. We use the model to study the dynamics of the system through sensitivity of the orbits to initial values, bifurcation diagrams, and fixed point analysis. We show that the GARBN's dynamics range from order to chaos, depending on the type of random variable generating the asynchrony and the parameter combinations.

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!