World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

MONODISPERSE COLLOIDAL SUSPENSIONS OF SILICA AND PMMA SPHERES AS MODEL ELECTRORHEOLOGICAL FLUIDS: A REAL-SPACE STUDY OF STRUCTURE FORMATION

    Colloidal particle coordinates in three dimensions can be obtained in 3D samples with a combination of the increased resolution and optical sectioning capabilities of confocal microscopy and fluorescently labeled model core-shell silica colloids. In this work we show how this capability can be used to analyze structure formation in electrorheological fluids on a quantitative basis. We find body-centered-tetragonal (BCT) crystals for colloidal particles in an electric field. Metastable sheet like structures were identified as an intermediate phase prior to BCT crystal formation. Due to finite-size effects induced by the electrode surface the sheets are not randomly oriented, but grow preferentially with a 60° tilt with respect to the electric field. Preliminary measurements indicate that flow-aligned sheets form under shear. Finally, we show that in the case that the ionic strength is very low, electric-field-induced dipolar interactions can be present in addition to long-range repulsions between the colloids leading to interesting metastable and equilibrium structures with possibilities for applications in photonic bandgap crystals as well as in model ER studies.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!