Abstract
The small collision systems like p+p and p+A collisions have shown new features like A+A collisions in the relativistic regime. These new aspects in small systems which have altered our research and understanding on the two-particle correlation measurements have been provided. Additionally, a critical observation of the fluctuation measurements provides new ways to infer such novel happening in the small collision systems. The ongoing and future endeavors towards the new measurements are also discussed.
References
- 1. , Nucl. Phys. 90, 1 (2016). https://doi.org/10.1016/j.ppnp.2016.04.003, arXiv:1604.08082 [hep-ph]. Crossref, Web of Science, Google Scholar
- 2. , Phys. Rep. 36, 137 (1978). https://doi.org/10.1016/0370-1573(78)90208-9. Crossref, Web of Science, ADS, Google Scholar
- 3. , Nature 279, 479 (1979). https://doi.org/10.1038/279479a0. Crossref, Web of Science, ADS, Google Scholar
- 4. , Int. J. Mod. Phys. A 31, 1630010 (2016). https://doi.org/10.1142/S0217751X16300106, arXiv:1411.3680 [hep-ph]. Link, Web of Science, ADS, Google Scholar
- 5. , Science 256, 1287 (1992). https://doi.org/10.1126/science.256.5061.1287. Crossref, Web of Science, ADS, Google Scholar
- 6. J. Berges, arXiv:hep-ph/9902419. Google Scholar
- 7. , Nucl. Phys. B, Proc. Suppl. 119, 210 (2003). https://doi.org/10.1016/S0920-5632(03)01508-1, arXiv:hep-lat/0208077 [hep-lat]. Crossref, ADS, Google Scholar
- 8. , J. Phys. G 39, 013101 (2012). https://doi.org/10.1088/0954-3899/39/1/013101, arXiv:1108.2939 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 9. F. Wilczek, arXiv:hep-ph/0003183. Google Scholar
- 10. H. Satz, arXiv:hep-ph/9706342 [hep-ph]. Google Scholar
- 11. , Prog. Part. Nucl. Phys. 52, 197 (2004) https://doi.org/10.1016/j.ppnp.2003.09.002. arXiv:nucl-th/0305030 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 12. , Phys. Rep. 621, 76 (2016). https://doi.org/10.1016/j.physrep.2015.12.003, arXiv:1510.00442 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 13. , Phys. Rev. C 80, 014906 (2009). https://doi.org/10.1103/PhysRevC.80.014906, arXiv:0812.1741 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 14. , Phys. Rep. 61, 71 (1980). Crossref, Web of Science, ADS, Google Scholar
- 15. , J. Phys. A 42, 214003 (2009). https://doi.org/10.1088/1751-8113/42/21/214003, arXiv:0810.5529 [nucl-th]. Crossref, ADS, Google Scholar
- 16. , Int. J. Mod. Phys. A 29, 1430072 (2014). https://doi.org/10.1142/S0217751X14300725, arXiv:1409.4232 [hep-ph]. Link, Web of Science, ADS, Google Scholar
- 17. J. M. Richard, arXiv:1205.4326 [hep-ph]. Google Scholar
- 18. , J. High Energy Phys. 03, 057 (2015). https://doi.org/10.1007/JHEP03(2015)057, arXiv:1409.8305 [hep-lat]. Crossref, Web of Science, ADS, Google Scholar
- 19. , Prog. Part. Nucl. Phys. 53, 273 (2004). https://doi.org/10.1016/j.ppnp.2004.02.025, arXiv:hep-ph/0312227 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 20. , Phys. Rev. C 75, 054907 (2007). https://doi.org/10.1103/PhysRevC.75.054907, arXiv:hep-ph/0611131 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 21. , Nucl. Phys. A 750, 30 (2005). https://doi.org/10.1016/j.nuclphysa.2004.10.034, arXiv:nucl-th/0405013 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 22. , Prog. Part. Nucl. Phys. 62, 48 (2009). https://doi.org/10.1016/j.ppnp.2008.09.001, arXiv:0807.3033 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 23. , Eur. Phys. J. C 49, 275 (2007). https://doi.org/10.1140/epjc/s10052-006-0061-1, arXiv:nucl-th/0608070 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 24. , Nucl. Phys. A 774, 387 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.058, arXiv:hep-ph/0510123 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 25. , J. Phys. Conf. Ser. 50, 8 (2006). https://doi.org/10.1088/1742-6596/50/1/002, arXiv:astro-ph/0504501 [astro-ph]. Crossref, ADS, Google Scholar
- 26. , Ann. Rev. Nucl. Part. Sci. 68, 339 (2018). https://doi.org/10.1146/annurev-nucl-101917-020852, arXiv:1802.04801 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 27. , J. Phys. G 25, R1 (1999). https://doi.org/10.1088/0954-3899/25/3/013, [hep-ph/9810281]. Crossref, Web of Science, ADS, Google Scholar
- 28. , Ann. Rev. Nucl. Part. Sci. 68, 211 (2018). https://doi.org/10.1146/annurev-nucl-101916-123209, arXiv:1801.03477 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar
- 29. , Nat. Rev. Phys. 2, 10 (2019). https://doi.org/10.1038/s42254-019-0137-0, arXiv:2001.03624 [astro-ph.CO]. Crossref, ADS, Google Scholar
- 30. R. Allahverdi et al., arXiv:2006.16182 [astro-ph.CO]. Google Scholar
- 31. , Phys. Rep. 333, 245 (2000). https://doi.org/10.1016/S0370-1573(00)00025-9, arXiv:astro-ph/0002044 [astro-ph]. Crossref, Web of Science, ADS, Google Scholar
- 32. , Class. Quantum Grav. 32, 124007 (2015). https://doi.org/10.1088/0264-9381/32/12/124007, arXiv:1506.01907 [astro-ph.CO]. Crossref, Web of Science, ADS, Google Scholar
- 33. K. A. Olive, arXiv:astro-ph/0202486 [astro-ph]. Google Scholar
- 34. , Rep. Prog. Phys. 71, 056901 (2008). https://doi.org/10.1088/0034-4885/71/5/056901, arXiv:0801.2968 [astro-ph]. Crossref, Web of Science, ADS, Google Scholar
- 35. , Lect. Notes Phys. 646, 127 (2004). https://doi.org/10.1007/978-3-540-40918-2_5, arXiv:hep-th/0306071 [hep-th]. Crossref, ADS, Google Scholar
- 36. , Phys. Rev. D 74, 023508 (2006). https://doi.org/10.1103/PhysRevD.74.023508, arXiv:hep-th/0605244 [hep-th]. Crossref, Web of Science, ADS, Google Scholar
- 37. D. Baumann, arXiv:0907.5424 [hep-th]. Google Scholar
- 38. , Astrophys. J. 397, 420 (1992). https://doi.org/10.1086/171797. Crossref, Web of Science, ADS, Google Scholar
- 39. , Astrophys. J. Lett. 464, L1 (1996). https://doi.org/10.1086/310075, arXiv:astro-ph/9601067 [astro-ph]. Crossref, Web of Science, ADS, Google Scholar
- 40.
WMAP ( ), Astrophys. J. Suppl. 148, 175 (2003). https://doi.org/10.1086/377226, arXiv:astro-ph/0302209 [astro-ph]. Crossref, Web of Science, Google Scholar - 41.
WMAP ( ), Astrophys. J. Suppl. 148, 1 (2003). https://doi.org/10.1086/377253, arXiv:astro-ph/0302207 [astro-ph]. Crossref, Web of Science, Google Scholar - 42.
Planck ( ), Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830, arXiv:1502.01589 [astro-ph.CO]. Crossref, Web of Science, ADS, Google Scholar - 43.
Planck ( ), Astron. Astrophys. 571, A16 (2014). https://doi.org/10.1051/0004-6361/201321591, arXiv:1303.5076 [astro-ph.CO]. Crossref, Web of Science, Google Scholar - 44. , Mon. Not. R. Astron. Soc. 452, 1493 (2015). https://doi.org/10.1093/mnras/stv1404, arXiv:1412.5355 [astro-ph.CO]. Crossref, Web of Science, ADS, Google Scholar
- 45. V. Koch, arXiv:0810.2520 [nucl-th]. Google Scholar
- 46. , Phys. Rev. C 85, 068201 (2012). https://doi.org/10.1103/PhysRevC.85.068201, arXiv:1204.6394 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 47. , Nucl. Phys. A 774, 619 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.099, arXiv:hep-ph/0510126 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 48. , Nucl. Phys. A 698, 261 (2002). https://doi.org/10.1016/S0375-9474(02)00716-9, arXiv:nucl-th/0103084 [nucl-th]. Crossref, ADS, Google Scholar
- 49. , Phys. Rev. C 84, 024911 (2011). https://doi.org/10.1103/PhysRevC.84.024911, arXiv:1104.0650 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 50. , Nucl. Phys. A 774, 199 (2006). https://doi.org/10.1016/j.nuclphysa.2006.06.041, arXiv:nucl-ex/0510029 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar
- 51. F. Becattini, J. Liao and M. Lisa, arXiv:2102.00933 [nucl-th]. Google Scholar
- 52.
STAR Collab. ( ), Nucl. Phys. A 757, 102 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085, [nucl-ex/0501009]. Crossref, Web of Science, Google Scholar - 53.
PHENIX Collab. ( ), Nucl. Phys. A 757, 184 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086, [nucl-ex/0410003]. Crossref, Web of Science, Google Scholar - 54. , Nucl. Phys. A 757, 28 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.084, [nucl-ex/0410022]. Crossref, Web of Science, ADS, Google Scholar
- 55.
BRAHMS Collab. ( ), Nucl. Phys. A 757, 1 (2005). https://doi.org/10.1016/j.nuclphysa.2005.02.130, [nucl-ex/0410020]. Crossref, Web of Science, Google Scholar - 56.
ALICE Collab. ( ), Int. J. Mod. Phys. A 29, 1430044 (2014). https://doi.org/10.1142/S0217751X14300440, arXiv:1402.4476 [nucl-ex]. Link, Web of Science, ADS, Google Scholar - 57. CMS (G. K. Krintiras), arXiv:2006.05556 [nucl-ex]. Google Scholar
- 58. , Eur. Phys. J. Plus 131, 52 (2016). https://doi.org/10.1140/epjp/i2016-16052-4, arXiv:1511.02151 [nucl-ex]. Crossref, Web of Science, Google Scholar
- 59. , Phys. Lett. B 178, 416 (1986). Crossref, Web of Science, ADS, Google Scholar
- 60. , Nucl. Phys. A 418, 447C (1984). Crossref, ADS, Google Scholar
- 61. , Phys. Lett. B 735, 445 (2014). https://doi.org/10.1016/j.physletb.2014.05.050, arXiv:1401.3817 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 62. , Rev. Phys. 1, 172 (2016). https://doi.org/10.1016/j.revip.2016.11.001, arXiv:1702.07231 [hep-ex]. Crossref, Google Scholar
- 63. S. A. Voloshin, A. M. Poskanzer and R. Snellings, arXiv:0809.2949 [nucl-ex]. Google Scholar
- 64. , New J. Phys. 13, 055008 (2011). https://doi.org/10.1088/1367-2630/13/5/055008, arXiv:1102.3010 [nucl-ex]. Crossref, Web of Science, Google Scholar
- 65. , Rev. Phys. 1, 154 (2016). https://doi.org/10.1016/j.revip.2016.11.002, arXiv:1702.07233 [hep-ex]. Crossref, Google Scholar
- 66. , Phys. Rev. Lett. 98, 092301 (2007). https://doi.org/10.1103/PhysRevLett.98.092301, arXiv:nucl-ex/0609025 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar
- 67. R. A. Lacey, A. Taranenko and R. Wei, arXiv:0905.4368 [nucl-ex]. Google Scholar
- 68. , Int. J. Mod. Phys. A 31, 1645016 (2016). https://doi.org/10.1142/S0217751X16450160, arXiv:1507.05005 [nucl-th]. Link, Web of Science, ADS, Google Scholar
- 69. , Nucl. Phys. A 834, 229C (2010). https://doi.org/10.1016/j.nuclphysa.2009.12.047. Crossref, Web of Science, ADS, Google Scholar
- 70. , Phys. Rev. C 83, 031901 (2011). https://doi.org/10.1103/PhysRevC.83.031901, arXiv:1011.6328 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar
- 71. , Nucl. Phys. A 1007, 122132 (2021). https://doi.org/10.1016/j.nuclphysa.2020.122132, arXiv:2111.03926 [nucl-ex]. Crossref, Web of Science, Google Scholar
- 72.
CMS ( ), J. High Energy Phys. 09, 091 (2010). https://doi.org/10.1007/JHEP09(2010)091, arXiv:1009.4122 [hep-ex]. Google Scholar - 73.
CMS ( ), Phys. Lett. B 718, 795 (2013). https://doi.org/10.1016/j.physletb.2012.11.025, arXiv:1210.5482 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 74.
ALICE ( ), Phys. Lett. B 719, 29 (2013). https://doi.org/10.1016/j.physletb.2013.01.012, arXiv:1212.2001 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 75.
ATLAS ( ), Phys. Rev. Lett. 110, 182302 (2013). https://doi.org/10.1103/PhysRevLett.110.182302, arXiv:1212.5198 [hep-ex]. Crossref, Web of Science, ADS, Google Scholar - 76.
ALICE ( ), Phys. Lett. B 741, 38 (2015). https://doi.org/10.1016/j.physletb.2014.11.028, arXiv:1406.5463 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 77.
STAR ( ), Phys. Rev. C 85, 014903 (2012). https://doi.org/10.1103/PhysRevC.85.014903, arXiv:1110.5800 [nucl-ex]. Crossref, Web of Science, Google Scholar - 78.
STAR ( ), Phys. Rev. C 80, 064912 (2009). https://doi.org/10.1103/PhysRevC.80.064912, arXiv:0909.0191 [nucl-ex]. Crossref, Web of Science, Google Scholar - 79. , Phys. Lett. B 696, 499 (2011). https://doi.org/10.1016/j.physletb.2011.01.013, arXiv:1011.5773 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 80.
ALICE ( ), Eur. Phys. J. C 76, 86 (2016). https://doi.org/10.1140/epjc/s10052-016-3915-1, arXiv:1509.07255 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 81. , Phys. Rev. C 87, 034913 (2013). https://doi.org/10.1103/PhysRevC.87.034913, arXiv:1302.3535 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 82.
ALICE ( ), J. High Energy Phys. 09, 032 (2017). https://doi.org/10.1007/JHEP09(2017)032, arXiv:1707.05690 [nucl-ex]. ADS, Google Scholar - 83.
LHCb ( ), Phys. Lett. B 762, 473 (2016). https://doi.org/10.1016/j.physletb.2016.09.064, arXiv:1512.00439 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 84.
ALICE ( ), Phys. Rev. Lett. 123, 142301 (2019). https://doi.org/10.1103/PhysRevLett.123.142301, arXiv:1903.01790 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 85. , Phys. Rev. C 93, 044908 (2016). https://doi.org/10.1103/PhysRevC.93.044908, arXiv:1601.04513 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 86.
ATLAS ( ), Eur. Phys. J. C 79, 985 (2019). https://doi.org/10.1140/epjc/s10052-019-7489-6, arXiv:1907.05176 [nucl-ex]. Crossref, Web of Science, ADS, Google Scholar - 87.
CMS ( ), Phys. Rev. Lett. 120, 092301 (2018). https://doi.org/10.1103/PhysRevLett.120.092301, arXiv:1709.09189 [nucl-ex]. Crossref, Web of Science, Google Scholar - 88.
ALICE ( ), Eur. Phys. J. C 74, 3077 (2014). https://doi.org/10.1140/epjc/s10052-014-3077-y, arXiv:1407.5530 [nucl-ex]. Crossref, Web of Science, Google Scholar - 89. M. Diehl, D. Ostermeier and A. Schafer, J. High Energy Phys. 03, 089 (2012) [Erratum J. High Energy Phys. 03, 001 (2016)], 10.1007/JHEP03(2012)089, arXiv:1111.0910 [hep-ph]. Google Scholar
- 90. , Phys. Lett. B 774, 351 (2017). https://doi.org/10.1016/j.physletb.2017.09.077, arXiv:1701.07145 [nucl-th]. Crossref, Web of Science, ADS, Google Scholar
- 91. , Nucl. Phys. A 1005, 121908 (2021). https://doi.org/10.1016/j.nuclphysa.2020.121908, arXiv:2005.02684 [nucl-th]. Crossref, Web of Science, Google Scholar
- 92. , Int. J. Mod. Phys. E 24, 1530014 (2015). https://doi.org/10.1142/S0218301315300143, arXiv:1511.00790 [hep-ph]. Link, ADS, Google Scholar
- 93. , Int. J. Mod. Phys. A 33, 1850092 (2018). https://doi.org/10.1142/S0217751X18500926, arXiv:1802.00414 [nucl-ex]. Link, Web of Science, ADS, Google Scholar
- 94. , Phys. Rev. C 88, 044915 (2013). https://doi.org/10.1103/PhysRevC.88.044915, arXiv:1301.4470 [hep-ph]. Crossref, Web of Science, ADS, Google Scholar
- 95. , Int. J. Mod. Phys. A 36, 2130014 (2021). https://doi.org/10.1142/S0217751X21300143. Link, Web of Science, ADS, Google Scholar
- 96.
ALICE ( ), J. Phys. Conf. Ser. 1014, 012010 (2018). https://doi.org/10.1088/1742-6596/1014/1/012010. Crossref, Google Scholar - 97. G. Apollinari, O. Bruning, T. Nakamoto and L. Rossi, arXiv:1705.08830 [physics.acc-ph]. Google Scholar
- 98. E. Chapon et al., arXiv:2012.14161 [hep-ph]. Google Scholar
- 99. , CERN Yellow Rep. Monogr. 7, 1159 (2019). https://doi.org/10.23731/CYRM-2019-007.1159, arXiv:1812.06772 [hep-ph]. Google Scholar
You currently do not have access to the full text article. |
---|