World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Selected Papers of the Julian Schwinger Centennial Conference (Part 2)No Access

Non-thermal fixed points: Universal dynamics far from equilibrium

    https://doi.org/10.1142/S0217751X19410069Cited by:36 (Source: Crossref)

    In this article we give an overview of the concept of universal dynamics near non-thermal fixed points in isolated quantum many-body systems. We outline a non-perturbative kinetic theory derived within a Schwinger–Keldysh closed-time path-integral approach, as well as a low-energy effective field theory which enable us to predict the universal scaling exponents characterizing the time evolution at the fixed point. We discuss the role of wave-turbulent transport in the context of such fixed points and discuss universal scaling evolution of systems bearing ensembles of (quasi) topological defects. This is rounded off by the recently introduced concept of prescaling as a generic feature of the evolution towards a non-thermal fixed point.

    References

    • 1. L. Kofman, A. D. Linde and A. A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73, 3195 (1994). Crossref, Web of Science, ADSGoogle Scholar
    • 2. R. Micha and I. I. Tkachev, Relativistic turbulence: A long way from preheating to equilibrium, Phys. Rev. Lett. 90, 121301 (2003). Crossref, Web of Science, ADSGoogle Scholar
    • 3. R. Baier, A. H. Mueller, D. Schiff and D. T. Son, ‘Bottom up’ thermalization in heavy ion collisions, Phys. Lett. B 502, 51 (2001). Crossref, Web of Science, ADSGoogle Scholar
    • 4. J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Turbulent thermalization process in heavy-ion collisions at ultrarelativistic energies, Phys. Rev. D 89, 074011 (2014). Crossref, Web of Science, ADSGoogle Scholar
    • 5. I. Bloch, J. Dalibard and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008). Crossref, Web of Science, ADSGoogle Scholar
    • 6. A. Polkovnikov, K. Sengupta, A. Silva and M. Vengalattore, Colloquium: Nonequilibrium dynamics of closed interacting quantum systems, Rev. Mod. Phys. 83, 863 (2011). Crossref, Web of Science, ADSGoogle Scholar
    • 7. T. Kinoshita, T. Wenger and D. S. Weiss, A quantum Newton’s cradle, Nature 440, 900 (2006). Crossref, Web of Science, ADSGoogle Scholar
    • 8. S. Hofferberth, I. Lesanovsky, B. Fischer, T. Schumm and J. Schmiedmayer, Non-equilibrium coherence dynamics in one-dimensional Bose gases, Nature 449, 324 (2007). Crossref, Web of Science, ADSGoogle Scholar
    • 9. S. Trotzky, Y.-A. Chen, A. Flesch, I. P. McCulloch, U. Schollwöck, J. Eisert and I. Bloch, Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas, Nature Phys. 8, 325 (2012). Crossref, Web of Science, ADSGoogle Scholar
    • 10. P. Calabrese, F. H. L. Essler and G. Mussardo (eds.), Special Issue on Quantum Integrability in Out of Equilibrium Systems, J. Stat. Mech. (2016). Google Scholar
    • 11. L. M. A. Bettencourt and C. Wetterich, Time evolution of correlation functions in non-equilibrium field theories, Phys. Lett. B 430, 140 (1998). Crossref, Web of Science, ADSGoogle Scholar
    • 12. G. Aarts, G. F. Bonini and C. Wetterich, Exact and truncated dynamics in nonequilibrium field theory, Phys. Rev. D 63, 025012 (2000). Crossref, Web of Science, ADSGoogle Scholar
    • 13. J. Berges, S. Borsányi and C. Wetterich, Prethermalization, Phys. Rev. Lett. 93, 142002 (2004). Crossref, Web of Science, ADSGoogle Scholar
    • 14. M. Gring, M. Kuhnert, T. Langen, T. Kitagawa, B. Rauer, M. Schreitl, I. Mazets, D. A. Smith, E. Demler and J. Schmiedmayer, Relaxation and prethermalization in an isolated quantum system, Science 337, 1318 (2012). Crossref, Web of Science, ADSGoogle Scholar
    • 15. T. Langen, T. Gasenzer and J. Schmiedmayer, Prethermalization and universal dynamics in near-integrable quantum systems, J. Stat. Mech. 6, 064009 (2016). Crossref, Web of ScienceGoogle Scholar
    • 16. E. T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106, 620 (1957). Crossref, Web of Science, ADSGoogle Scholar
    • 17. E. T. Jaynes, Information theory and statistical mechanics. ii, Phys. Rev. 108, 171 (1957). Crossref, Web of Science, ADSGoogle Scholar
    • 18. M. Rigol, V. Dunjko, V. Yurovsky and M. Olshanii, Relaxation in a completely integrable many-body quantum system: An ab initio study of the dynamics of the highly excited states of 1d lattice hard-core bosons, Phys. Rev. Lett. 98, 050405 (2007). Crossref, Web of Science, ADSGoogle Scholar
    • 19. T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer and J. Schmiedmayer, Experimental observation of a Generalized Gibbs Ensemble, Science 348, 207 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 20. L. Vidmar and M. Rigol, Generalized Gibbs ensemble in integrable lattice models, J. Stat. Mech. 6, 064007 (2016). Crossref, Web of ScienceGoogle Scholar
    • 21. S. Braun, M. Friesdorf, S. S. Hodgman, M. Schreiber, J. P. Ronzheimer, A. Riera, M. del Rey, I. Bloch, J. Eisert and U. Schneider, Emergence of coherence and the dynamics of quantum phase transitions, PNAS 112, 3641 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 22. E. Nicklas, M. Karl, M. Höfer, A. Johnson, W. Muessel, H. Strobel, J. Tomkovic, T. Gasenzer and M. K. Oberthaler, Observation of scaling in the dynamics of a strongly quenched quantum gas, Phys. Rev. Lett. 115, 245301 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 23. N. Navon, A. L. Gaunt, R. P. Smith and Z. Hadzibabic, Critical dynamics of spontaneous symmetry breaking in a homogeneous Bose gas, Science 347, 167 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 24. C. Eigen, J. A. P. Glidden, R. Lopes, E. A. Cornell, R. P. Smith and Z. Hadzibabic, Universal Prethermal Dynamics of Bose Gases Quenched to Unitarity, arXiv:1805.09802 [cond-mat.quant-gas] (2018). Google Scholar
    • 25. M. Schreiber, S. S. Hodgman, P. Bordia, H. P. Lüschen, M. H. Fischer, R. Vosk, E. Altman, U. Schneider and I. Bloch, Observation of many-body localization of interacting fermions in a quasirandom optical lattice, Science 349, 842 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 26. R. Vasseur and J. E. Moore, Nonequilibrium quantum dynamics and transport: from integrability to many-body localization, J. Stat. Mech. 6, 064010 (2016). Crossref, Web of ScienceGoogle Scholar
    • 27. F. H. L. Essler and M. Fagotti, Quench dynamics and relaxation in isolated integrable quantum spin chains, J. Stat. Mech. 6, 064002 (2016). Crossref, Web of ScienceGoogle Scholar
    • 28. M. A. Cazalilla and M.-C. Chung, Quantum quenches in the Luttinger model and its close relatives, J. Stat. Mech. 6, 064004 (2016). Crossref, Web of ScienceGoogle Scholar
    • 29. V. E. Zakharov, V. S. L’vov and G. Falkovich, Kolmogorov Spectra of Turbulence I  : Wave Turbulence (Springer, Berlin, 1992). CrossrefGoogle Scholar
    • 30. S. Nazarenko, Wave Turbulence, Lecture Notes in Physics, Vol. 825 (Springer, Heidelberg, 2011). CrossrefGoogle Scholar
    • 31. N. Navon, A. L. Gaunt, R. P. Smith and Z. Hadzibabic, Emergence of a turbulent cascade in a quantum gas, Nature 539, 72 (2016). Crossref, Web of Science, ADSGoogle Scholar
    • 32. B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik and J. Schmiedmayer, Recurrences in an isolated quantum many-body system, Science 360, 307 (2018). Crossref, Web of Science, ADSGoogle Scholar
    • 33. J. Berges, A. Rothkopf and J. Schmidt, Non-thermal fixed points: Effective weak-coupling for strongly correlated systems far from equilibrium, Phys. Rev. Lett. 101, 041603 (2008). Crossref, Web of Science, ADSGoogle Scholar
    • 34. A. Piñeiro Orioli, K. Boguslavski and J. Berges, Universal self-similar dynamics of relativistic and nonrelativistic field theories near nonthermal fixed points, Phys. Rev. D 92, 025041 (2015). Crossref, Web of ScienceGoogle Scholar
    • 35. M. Prüfer, P. Kunkel, H. Strobel, S. Lannig, D. Linnemann, C.-M. Schmied, J. Berges, T. Gasenzer and M. K. Oberthaler, Observation of universal quantum dynamics far from equilibrium, Nature 563, 217 (2018). Crossref, Web of Science, ADSGoogle Scholar
    • 36. S. Erne, R. Buecker, T. Gasenzer, J. Berges and J. Schmiedmayer, Observation of universal dynamics in an isolated one-dimensional Bose gas far from equilibrium, Nature 563, 225 (2018). Crossref, Web of Science, ADSGoogle Scholar
    • 37. C.-M. Schmied, A. N. Mikheev and T. Gasenzer, Prescaling in a far-from-equilibrium Bose gas, arXiv:1807.07514 [cond-mat.quant-gas] (2018). Google Scholar
    • 38. J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2, 407 (1961). Crossref, Web of Science, ADSGoogle Scholar
    • 39. K. T. Mahanthappa, Multiple production of photons in quantum electrodynamics, Phys. Rev. 126, 329 (1962). Crossref, Web of Science, ADSGoogle Scholar
    • 40. P. M. Bakshi and K. T. Mahanthappa, Expectation value formalism in quantum field theory. I, J. Math. Phys. 4, 1 (1963). Crossref, Web of Science, ADSGoogle Scholar
    • 41. P. M. Bakshi and K. T. Mahanthappa, Expectation value formalism in quantum field theory. II, J. Math. Phys. 4, 12 (1963). Crossref, Web of Science, ADSGoogle Scholar
    • 42. O. Konstantinov and V. Perel, A graphical technique for computation of kinetic quantities, Sov. Phys. JETP 39 (1961) [Zh. Eksp. Teor. Fiz. 37, 197, 365 (1960)]. Google Scholar
    • 43. L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, 1962). Google Scholar
    • 44. L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP 20, 1018 (1965) [Zh. Eksp. Teor. Fiz. 47, 1515 (1964)]. Google Scholar
    • 45. B. Mihaila, F. Cooper and J. F. Dawson, Resumming the large-N approximation for time evolving quantum systems, Phys. Rev. D 63, 096003 (2001). Crossref, Web of Science, ADSGoogle Scholar
    • 46. L. V. Keldysh, Real-time nonequilibrium Green’s functions, in Progress in Nonequilibrium Green’s Functions II, eds. M. Bonitz and D. Semkat (World Scientific, Singapore, 2003). LinkGoogle Scholar
    • 47. A. Kamenev, Field Theory of Non-Equilibrium Systems (Cambridge University Press, 2011). CrossrefGoogle Scholar
    • 48. P. C. Martin, Quantum kinetic equations, in Progress in Nonequilibrium Green’s Functions, eds. M. Bonitz, R. Nareyka and D. Semkat (World Scientific, 2000). LinkGoogle Scholar
    • 49. A. I. Larkin and Y. N. Ovchinnikov, Nonlinear conductivity of superconducters in the mixed state, Sov. Phys. JETP 41 (1975) [Zh. Eksp. Teor. Fiz. 68, 1915–1927 (1975)]. Google Scholar
    • 50. P. C. Hohenberg and B. I. Halperin, Theory of dynamic critical phenomena, Rev. Mod. Phys. 49, 435 (1977). Crossref, Web of Science, ADSGoogle Scholar
    • 51. N. Goldenfeld, Lectures on Phase Transitions and the Renormalization Group, Frontiers in Physics (Addison-Wesley, 1992). Google Scholar
    • 52. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics (Clarendon Press, 2004). Google Scholar
    • 53. J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universality far from equilibrium: From superfluid Bose gases to heavy-ion collisions, Phys. Rev. Lett. 114, 061601 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 54. M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis, Formation of Bose-Einstein condensates, in Universal Themes of Bose-Einstein Condensation, eds. D. W. Snoke, N. P. Proukakis and P. B. Littlewood (Cambridge University Press, Cambridge, 2017). CrossrefGoogle Scholar
    • 55. I. Chantesana, A. Piñeiro Orioli and T. Gasenzer, Kinetic theory of non-thermal fixed points in a Bose gas, arXiv:1801.09490 [cond-mat.quant-gas] (2018). Google Scholar
    • 56. B. Nowak, J. Schole and T. Gasenzer, Universal dynamics on the way to thermalisation, New J. Phys. 16, 093052 (2014). Crossref, Web of ScienceGoogle Scholar
    • 57. J. Berges and D. Sexty, Bose condensation far from equilibrium, Phys. Rev. Lett. 108, 161601 (2012). Crossref, Web of Science, ADSGoogle Scholar
    • 58. B. Svistunov, Highly nonequilibrium Bose condensation in a weakly interacting gas, J. Mosc. Phys. Soc. 1, 373 (1991). Google Scholar
    • 59. M. Karl and T. Gasenzer, Strongly anomalous non-thermal fixed point in a quenched two-dimensional Bose gas, New J. Phys. 19, 093014 (2017). Crossref, Web of ScienceGoogle Scholar
    • 60. A. N. Mikheev, C.-M. Schmied and T. Gasenzer, Low-energy effective theory of non-thermal fixed points in a multicomponent Bose gas, arXiv:1807.10228 [cond-mat.quant-gas] (2018). Google Scholar
    • 61. J. Schole, B. Nowak and T. Gasenzer, Critical dynamics of a two-dimensional superfluid near a non-thermal fixed point, Phys. Rev. A 86, 013624 (2012). Crossref, Web of Science, ADSGoogle Scholar
    • 62. J. Berges and G. Hoffmeister, Nonthermal fixed points and the functional renormalization group, Nucl. Phys. B 813, 383 (2009). Crossref, Web of Science, ADSGoogle Scholar
    • 63. C. Scheppach, J. Berges and T. Gasenzer, Matter-wave turbulence: Beyond kinetic scaling, Phys. Rev. A 81, 033611 (2010). Crossref, Web of Science, ADSGoogle Scholar
    • 64. B. Nowak, D. Sexty and T. Gasenzer, Superfluid turbulence: Nonthermal fixed point in an ultracold Bose gas, Phys. Rev. B 84, 020506(R) (2011). Crossref, Web of Science, ADSGoogle Scholar
    • 65. B. Nowak, J. Schole, D. Sexty and T. Gasenzer, Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas, Phys. Rev. A 85, 043627 (2012). Crossref, Web of Science, ADSGoogle Scholar
    • 66. M. Schmidt, S. Erne, B. Nowak, D. Sexty and T. Gasenzer, Nonthermal fixed points and solitons in a one-dimensional Bose gas, New J. Phys. 14, 075005 (2012). Crossref, Web of ScienceGoogle Scholar
    • 67. B. Nowak, S. Erne, M. Karl, J. Schole, D. Sexty and T. Gasenzer, Non-thermal fixed points: universality, topology, & turbulence in Bose gases, Lecture Notes of the Les Houches Summer School, Vol. 99 (2016). Google Scholar
    • 68. M. Karl, B. Nowak and T. Gasenzer, Tuning universality far from equilibrium, Sci. Rep. 3 (2013). Crossref, Web of ScienceGoogle Scholar
    • 69. M. Karl, B. Nowak and T. Gasenzer, Universal scaling at non-thermal fixed points of a two-component Bose gas, Phys. Rev. A 88, 063615 (2013). Crossref, Web of Science, ADSGoogle Scholar
    • 70. C. Ewerz, T. Gasenzer, M. Karl and A. Samberg, Non-Thermal Fixed Point in a Holographic Superfluid, JHEP 05, 070 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 71. J. Deng, S. Schlichting, R. Venugopalan and Q. Wang, Off-equilibrium infrared structure of self-interacting scalar fields: Universal scaling, Vortex-antivortex superfluid dynamics and Bose-Einstein condensation, Phys. Rev. A 97, 053606 (2018). Crossref, Web of Science, ADSGoogle Scholar
    • 72. J. Berges, K. Boguslavski, A. Chatrchyan and J. Jaeckel, Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories, Phys. Rev. D 96, 076020 (2017). Crossref, Web of Science, ADSGoogle Scholar
    • 73. J. Berges and J. Jaeckel, Far from equilibrium dynamics of Bose-Einstein condensation for Axion Dark Matter, Phys. Rev. D 91, 025020 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 74. G. D. Moore, Condensates in Relativistic Scalar Theories, Phys. Rev. D 93, 065043 (2016). Crossref, Web of Science, ADSGoogle Scholar
    • 75. J. Berges, Nonequilibrium Quantum Fields: From Cold Atoms to Cosmology, in Proc. Int. School on Strongly Interacting Quantum Systems Out of Equilibrium, Les Houches, ed. T. Giamarchi et al. (Oxford University Press, Oxford, 2016). CrossrefGoogle Scholar
    • 76. J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Universal attractor in a highly occupied non-Abelian plasma, Phys. Rev. D 89, 114007 (2014). Crossref, Web of Science, ADSGoogle Scholar
    • 77. J. Berges, K. Boguslavski, S. Schlichting and R. Venugopalan, Nonequilibrium fixed points in longitudinally expanding scalar theories: infrared cascade, Bose condensation and a challenge for kinetic theory, Phys. Rev. D 92, 096006 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 78. A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43, 357 (1994). Crossref, Web of Science, ADSGoogle Scholar
    • 79. S. Ma, Modern Theory of Critical Phenomena, Advanced Book Classics (Perseus, 2000). Google Scholar
    • 80. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 2000). CrossrefGoogle Scholar
    • 81. M. Henkel, H. Hinrichsen and S. Lübeck, Non-Equilibrium Phase Transitions  : Volume 1  : Absorbing Phase Transitions, Theoretical and Mathematical Physics (Springer, Netherlands, 2008). Google Scholar
    • 82. U. C. Täuber, Critical Dynamics. A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling Behaviour (Cambridge University Press, 2014). CrossrefGoogle Scholar
    • 83. C. Wetterich, ‘Prethermalization’, talk given at RETUNE, Heidelberg, 2012 (2012). Google Scholar
    • 84. T. Mori, T. N. Ikeda, E. Kaminishi and M. Ueda, Thermalization and prethermalization in isolated quantum systems: a theoretical overview, J. Phys. B: At. Mol. Phys. 51, 112001 (2018). Crossref, Web of Science, ADSGoogle Scholar
    • 85. G. F. Bonini and C. Wetterich, Time evolution of correlation functions and thermalization, Phys. Rev. D 60, 105026 (1999). Crossref, Web of Science, ADSGoogle Scholar
    • 86. J. Eisert, M. Friesdorf and C. Gogolin, Quantum many-body systems out of equilibrium, Nature Physics 11, 124 (2015). Crossref, Web of Science, ADSGoogle Scholar
    • 87. C. Gogolin and J. Eisert, Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems – a review, arXiv:1503.07538 [quant-ph] (2015). Google Scholar
    • 88. M. Girardeau, Relaxation of localized magnetization in the one-dimensional XY model, Phys. Lett. A 32, 67 (1970). Crossref, Web of Science, ADSGoogle Scholar
    • 89. M. Girardeau, Decay of magnetization in the one-dimensional XY model, Phys. Lett. A 30, 442 (1969). Crossref, Web of Science, ADSGoogle Scholar
    • 90. V. Gurarie, Probability density, diagrammatic technique, and epsilon expansion in the theory of wave turbulence, Nucl. Phys. B 441, 569 (1995). Crossref, Web of Science, ADSGoogle Scholar
    • 91. J. Berges, Introduction to nonequilibrium quantum field theory, AIP Conf. Proc. 739, 3 (2005). Google Scholar
    • 92. T. Gasenzer, Ultracold gases far from equilibrium, Eur. Phys. J. ST 168, 89 (2009). Crossref, Web of ScienceGoogle Scholar
    • 93. M. Lindner and M. M. Müller, Comparison of Boltzmann equations with quantum dynamics for scalar fields, Phys. Rev. D 73, 125002 (2006). Crossref, Web of Science, ADSGoogle Scholar
    • 94. A. Schachner, A. Piñeiro Orioli and J. Berges, Universal scaling of unequal-time correlation functions in ultracold Bose gases far from equilibrium, Phys. Rev. A 95, 053605 (2017). Crossref, Web of Science, ADSGoogle Scholar
    • 95. R. Walz, K. Boguslavski and J. Berges, Large-N kinetic theory for highly occupied systems, Phys. Rev. D 97, 116011 (2018). Crossref, Web of Science, ADSGoogle Scholar
    • 96. H. Georgi, Effective field theory, Annu. Rev. Nucl. Part. Sci. 43, 209 (1993). Crossref, Web of Science, ADSGoogle Scholar
    • 97. A. Pich, Effective field theory: Course, in Probing the standard model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, 1997. Pt. 1, 2, 1998. Google Scholar
    • 98. E. Fermi, Tentativo di una teoria dei raggi β, Il Nuovo Cimento 11, 1 (2008). Crossref, ADSGoogle Scholar
    • 99. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Microscopic theory of superconductivity, Phys. Rev. 106, 162 (1957). Crossref, Web of Science, ADSGoogle Scholar
    • 100. J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175 (1957). Crossref, Web of Science, ADSGoogle Scholar
    • 101. X. Wen, Quantum Field Theory of Many-Body Systems  : From the Origin of Sound to an Origin of Light and Electrons, Oxford Graduate Texts (Oxford University Press, Oxford, 2004). Google Scholar
    • 102. J. F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50, 3874 (1994). Crossref, Web of Science, ADSGoogle Scholar
    • 103. J. M. Pawlowski, Aspects of the functional renormalisation group, Ann. Phys. 322, 2831 (2007). Crossref, Web of Science, ADSGoogle Scholar
    • 104. T. Gasenzer and J. M. Pawlowski, Towards far-from-equilibrium quantum field dynamics: A functional renormalisation-group approach, Phys. Lett. B 670, 135 (2008). Crossref, Web of Science, ADSGoogle Scholar
    • 105. P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh and C. W. Gardiner, Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques, Adv. Phys. 57, 363 (2008). Crossref, Web of Science, ADSGoogle Scholar
    • 106. A. Polkovnikov, Phase space representation of quantum dynamics, Ann. Phys. 325, 1790 (2010). Crossref, Web of Science, ADSGoogle Scholar
    • 107. L. M. Pismen, Vortices in Nonlinear Fields  : From Liquid Crystals to Superfluids, from Non-equilibrium Patterns to Cosmic Strings (Clarendon Press, Oxford, 1999). CrossrefGoogle Scholar
    • 108. L. P. Pitaevskii and S. Stringari, Bose-Einstein Condensation (Clarendon Press, Oxford, 2003). Google Scholar
    • 109. N. G. Berloff and B. V. Svistunov, Scenario of strongly nonequilibrated Bose-Einstein condensation, Phys. Rev. A 66, 013603 (2002). Crossref, Web of Science, ADSGoogle Scholar
    • 110. T. Simula, M. J. Davis and K. Helmerson, Emergence of order from turbulence in an isolated planar superfluid, Phys. Rev. Lett. 113, 165302 (2014). Crossref, Web of Science, ADSGoogle Scholar
    • 111. A. J. Groszek, T. P. Simula, D. M. Paganin and K. Helmerson, Onsager vortex formation in Bose-Einstein condensates in two-dimensional power-law traps, Phys. Rev. A 93, 043614 (2016). Crossref, Web of Science, ADSGoogle Scholar
    • 112. S. Johnstone, A. J. Groszek, P. T. Starkey, C. J. Billington, T. P. Simula and K. Helmerson, Order from chaos: Observation of large-scale flow from turbulence in a two-dimensional superfluid, arXiv:1801.06952v2 (2018). Google Scholar
    • 113. C. Wetterich, Private communication (2018). Google Scholar
    • 114. J. M. Higbie, L. E. Sadler, S. Inouye, A. P. Chikkatur, S. R. Leslie, K. L. Moore, V. Savalli and D. M. Stamper-Kurn, Direct nondestructive imaging of magnetization in a spin-1 Bose-Einstein gas, Phys. Rev. Lett. 95, 050401 (2005). Crossref, Web of Science, ADSGoogle Scholar
    • 115. L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Vengalattore and D. M. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate, Nature 443, 312 (2006). Crossref, Web of Science, ADSGoogle Scholar
    • 116. J. Guzman, G.-B. Jo, A. N. Wenz, K. W. Murch, C. K. Thomas and D. M. Stamper-Kurn, Long-time-scale dynamics of spin textures in a degenerate f = 1 87Rb spinor Bose gas, Phys. Rev. A 84, 063625 (2011). Crossref, Web of Science, ADSGoogle Scholar
    You currently do not have access to the full text article.

    Recommend the journal to your library today!