Composite system in rotationally invariant noncommutative phase space
Abstract
Composite system is studied in noncommutative phase space with preserved rotational symmetry. We find conditions on the parameters of noncommutativity on which commutation relations for coordinates and momenta of the center-of-mass of composite system reproduce noncommutative algebra for coordinates and momenta of individual particles. Also, on these conditions, the coordinates and the momenta of the center-of-mass satisfy noncommutative algebra with effective parameters of noncommutativity which depend on the total mass of the system and do not depend on its composition. Besides, it is shown that on these conditions the coordinates in noncommutative space do not depend on mass and can be considered as kinematic variables, the momenta are proportional to mass as it has to be. A two-particle system with Coulomb interaction is studied and the corrections to the energy levels of the system are found in rotationally invariant noncommutative phase space. On the basis of this result the effect of noncommutativity on the spectrum of exotic atoms is analyzed.
References
- 1. , Phys. Rev. 71, 38 (1947). Web of Science, ADS, Google Scholar
- 2. , J. High Energy Phys. 9909, 032 (1999). Web of Science, ADS, Google Scholar
- 3. , Phys. Lett. B 331, 39 (1994). Web of Science, ADS, Google Scholar
- 4. , Phys. Rev. Lett. 88, 151602 (2002). Web of Science, ADS, Google Scholar
- 5. , Phys. Lett. B 609, 418 (2005). Web of Science, ADS, Google Scholar
- 6. , Phys. Lett. A 377, 3061 (2013). Web of Science, ADS, Google Scholar
- 7. , J. Phys. Stud. 17, 4001 (2013). Google Scholar
- 8. , Turk. J. Phys. 33, 149 (2009). Google Scholar
- 9. , Commun. Theor. Phys. 41, 837 (2004). Web of Science, ADS, Google Scholar
- 10. , Phys. Lett. A 381, 2463 (2017). Web of Science, ADS, Google Scholar
- 11. , Mod. Phys. Lett. A 26, 819 (2011). Link, Web of Science, ADS, Google Scholar
- 12. , Acta Phys. Polon. B 44, 699 (2013). Web of Science, ADS, Google Scholar
- 13. , Phys. Rev. A 81, 012106 (2010). Web of Science, ADS, Google Scholar
- 14. , Phys. Rev. A 86, 062112 (2012). Web of Science, ADS, Google Scholar
- 15. , Phys. Lett. A 375, 4116 (2011). Web of Science, ADS, Google Scholar
- 16. , Phys. Rev. Lett. 86, 2716 (2001). Web of Science, ADS, Google Scholar
- 17. , J. High Energy Phys. 1012, 001 (2010). Web of Science, ADS, Google Scholar
- 18. , Phys. Rev. D 72, 045001 (2005). Web of Science, ADS, Google Scholar
- 19. ,
J. Phys.: Conf. Ser. 343, 012096 (2012). Google Scholar - 20. , Phys. Rev. Lett. 101, 081602 (2008). Web of Science, ADS, Google Scholar
- 21. , Phys. Lett. A 378, 3509 (2014). Web of Science, ADS, Google Scholar
- 22. , Phys. Rev. D 77, 105007 (2008). Web of Science, ADS, Google Scholar
- 23. , J. Phys. A: Math. Theor. 42, 355201 (2009). Web of Science, Google Scholar
- 24. , J. Phys. A: Math. Theor. 47, 405203 (2014). Web of Science, Google Scholar
- 25. , SIGMA 10, 107 (2014). Web of Science, ADS, Google Scholar
- 26. , Phys. Rev. D 79, 125011 (2009). Web of Science, ADS, Google Scholar
- 27. , J. Phys. A: Math. Theor. 46, 245303 (2013). Web of Science, ADS, Google Scholar
- 28. , Int. J. Mod. Phys. A 32, 1750161 (2017). Link, Web of Science, ADS, Google Scholar
- 29. , Ukr. J. Phys. 61, 432 (2016). Web of Science, Google Scholar
- 30. , Mod. Phys. Lett. A 20, 2023 (2005). Link, Web of Science, ADS, Google Scholar
- 31. , Eur. Phys. J. C 75, 4 (2015). Web of Science, ADS, Google Scholar
- 32. , Eur. Phys. J. C 36, 251 (2004). Web of Science, ADS, Google Scholar
- 33. , J. Phys. A: Math. Gen. 38, 1553 (2005). ADS, Google Scholar
- 34. , Phys. Rev. Lett. 100, 061601 (2008). Web of Science, ADS, Google Scholar
- 35. , Int. J. Mod. Phys. A 26, 4133 (2011). Link, Web of Science, ADS, Google Scholar
- 36. , Phys. Lett. B 682, 235 (2009). Web of Science, ADS, Google Scholar
- 37. , Int. J. Mod. Phys. A 27, 1250100 (2012). Link, Web of Science, ADS, Google Scholar
- 38. , Mod. Phys. Lett. A 22, 377 (2007). Link, Web of Science, ADS, Google Scholar
- 39. , Phys. Rev. D 78, 065006 (2008). Web of Science, ADS, Google Scholar
- 40. , J. Geom. Phys. 61, 151 (2011). Web of Science, ADS, Google Scholar
- 41. , Phys. Rev. A 74, 012101 (2006). Web of Science, ADS, Google Scholar
- 42. , Phys. Lett. A 372, 5126 (2008). Web of Science, ADS, Google Scholar
- 43. ,
J. Phys.: Conf. Ser. 670, 012023 (2016). Google Scholar - 44. , Mod. Phys. Lett. A 32, 1750166 (2017). Link, Web of Science, ADS, Google Scholar
- 45. , Mod. Phys. Lett. A 30, 1550033 (2015). Link, Web of Science, ADS, Google Scholar
- 46. , Phys. Scr. 70, 276 (2004). Web of Science, ADS, Google Scholar
- 47. , Phys. Rev. Lett. 110, 230801 (2013). Web of Science, ADS, Google Scholar
- 48. ,
Lect. Notes Phys. 745, 187 (2008). Google Scholar - 49. , Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 86, 1 (2010). Web of Science, ADS, Google Scholar
- 50. , Nature 475, 484 (2011). Web of Science, Google Scholar
- 51. , Phys. Rev. D 72, 025010 (2005). Web of Science, ADS, Google Scholar
- 52. , Mod. Phys. Lett. A 31, 1650026 (2016). Link, Web of Science, ADS, Google Scholar
- 53. , Found. Phys. 46, 1666 (2016). Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|