World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

I begin with some memories of Abdus Salam who was my PhD supervisor. After reviewing the theory of nonlinear realisations and Kac–Moody algebras, I explain how to construct the nonlinear realisation based on the Kac–Moody algebra E11 and its vector representation. I explain how this field theory leads to dynamical equations which contain an infinite number of fields defined on a space–time with an infinite number of coordinates. I then show that these unique dynamical equations, when truncated to low level fields and the usual coordinates of space–time, lead to precisely the equations of motion of 11-dimensional supergravity theory. By taking different group decompositions of E11 we find all the maximal supergravity theories, including the gauged maximal supergravities, and as a result the nonlinear realisation should be thought of as a unified theory that is the low energy effective action for type II strings and branes. These results essentially confirm the E11 conjecture given many years ago.

Based on an invited talk given at the Memorial Meeting for Nobel Laureate Prof. Abdus Salam’s 90th Birthday, 25–28 January 2016, NTU, Singapore.

References

  • 1. J. Wess and B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B 70, 139 (1974); A Lagrangian model invariant under supergauge transformations, Phys. Lett. B 49, 52 (1974). Google Scholar
  • 2. A. Salam and J. Strathdee, On superfields and Fermi-Bose symmetry, Phys. Rev. D 11, 1521 (1975). Crossref, ISI, ADSGoogle Scholar
  • 3. L. O’Raifeartaigh, Spontaneous symmetry breaking for chiral scalar superfields, Nucl. Phys. B 96, 331 (1975). Crossref, ISI, ADSGoogle Scholar
  • 4. P. Fayet, Spontaneous supersymmetry breaking without gauge invariance, Phys. Lett. B 58, 67 (1975). Crossref, ISI, ADSGoogle Scholar
  • 5. P. West, Supersymmetric effective potential, Nucl. Phys. B 106, 219 (1976). Crossref, ISI, ADSGoogle Scholar
  • 6. E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188, 513 (1981). Crossref, ISI, ADSGoogle Scholar
  • 7. S. Weinberg, The Quantum Theory of Fields, Vol. 1 (Cambridge University Press, 1995); M. Veltman, Facts and Mysteries in Elementary Particle Physics (World Scientific, 2003); Contributions in: Shelter Island II, eds. R. Jackiw, N. Khuri, S. Weinberg and E. Witten (MIT Press, 1985); C. N. Yang, Selected Papers 1945-1980 (W. H. Freeman and Company, 1983); Contributions of: S. Coleman, M. Gell-Mann, S. Glashow and B. Zumino, Hadrons and their interactions, in 1967 International School of Physics Ettore Majorana, ed. A. Zichichi (Academic Press, 1968). The reader may like to read the wonderful lectures of Zumino that explain how the results of current algebra can be found in a very simple way from the non-linear realisation of SU(2) SU(2). Google Scholar
  • 8. V. Alessandrini, A general approach to dual multiloop diagrams, Nuovo Cimento A 2, 321 (1971); V. Allessandrini and D. Amati, Properties of dual multiloop amplitudes, Nuovo Cimento A 4, 793 (1971); C. Lovelace, M-loop generalized Veneziano formula, Phys. Lett. 32, 703 (1970). Google Scholar
  • 9. V. Alessandrini, D. Amati, M. Le Bellac and D. I. Olive, The operator approach to dual multiparticle theory, Phys. Rep. 1C, 170 (1971), as well as the additional supplement by D. Olive which appears immediately after this article. Google Scholar
  • 10. A. Neveu and J. Scherk, Gauge invariance and uniqueness of the renormalisation of dual models with unit intercept, Nucl. Phys. B 36, 155 (1972). Crossref, ISI, ADSGoogle Scholar
  • 11. T. Yoneya, Connection of dual models to electrodynamics and gravidynamics, Progr. Theor. Phys. 51, 1907 (1974); J. Scherk and J. Schwarz, Dual models for nonhadrons, Nucl. Phys. B 81, 118 (1974). Google Scholar
  • 12. C. Campbell and P. West, N = 2 D = 10 nonchiral supergravity and its spontaneous compactification, Nucl. Phys. B 243, 112 (1984); M. Huq and M. Namazie, Kaluza–Klein supergravity in ten dimensions, Class. Quantum Grav. 2, 597 (1985); F. Giani and M. Pernici, N = 2 supergravity in ten dimensions, Phys. Rev. D 30, 325 (1984). Google Scholar
  • 13. J. Schwarz and P. West, Symmetries and transformation of chiral N = 2 D = 10 supergravity, Phys. Lett. B 126, 301 (1983). Crossref, ISI, ADSGoogle Scholar
  • 14. P. Howe and P. West, The complete N = 2 D = 10 supergravity, Nucl. Phys. B 238, 181 (1984). Crossref, ISI, ADSGoogle Scholar
  • 15. J. Schwarz, Covariant field equations of chiral N = 2 D = 10 supergravity, Nucl. Phys. B 226, 269 (1983). Crossref, ISI, ADSGoogle Scholar
  • 16. E. Cremmer, B. Julia and J. Scherk, Supergravity theory in eleven-dimensions, Phys. Lett. B 76, 409 (1978). Crossref, ISI, ADSGoogle Scholar
  • 17. E. Cremmer and B. Julia, The N = 8 supergravity theory. I. The Lagrangian, Phys. Lett. B 80, 48 (1978). Crossref, ISI, ADSGoogle Scholar
  • 18. B. Julia, Group disintegrations, in Superspace Supergravity, eds. S. W. Hawking and M. Roček (Cambridge University Press, 1981), p. 331; E. Cremmer, Dimensional Reduction in Field Theory and Hidden Symmetries in Extended Supergravity (Trieste Supergravity School, 1981), p. 313; Supergravities in 5 dimensions, in Superspace Supergravity, eds. S. W. Hawking and M. Roček (Cambridge University Press, 1981), p. 331. Google Scholar
  • 19. A. Font, L. Ibanez, D. Lust and F. D. Quevedo, Strong-weak coupling duality and nonperturbative effects in string theory, Phys. Lett. B 249, 35 (1990); S. J. Rey, The confining phase of superstrings and axionic strings, Phys. Rev. D 43, 526 (1991). Google Scholar
  • 20. C. M. Hull and P. K. Townsend, Unity of superstring dualities, Nucl. Phys. B 438, 109 (1995), arXiv:hep-th/9410167. Crossref, ISI, ADSGoogle Scholar
  • 21. P. Townsend, The eleven dimensional supermembrane revisited, Phys. Lett. B 350, 184 (1995), arXiv:hep-th/9501068; E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443, 85 (1995), arXiv:hep-th/9503124. Google Scholar
  • 22. S. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177, 2239 (1969); C. Callan, S. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177, 2247 (1969). Google Scholar
  • 23. P. West, Introduction to Strings and Branes (Cambridge University Press, 2012). CrossrefGoogle Scholar
  • 24. A. Salam and J. Strathdee, Nonlinear realizations. 1: The role of Goldstone bosons, Phys. Rev. 184, 1750 (1969), C. Isham, A. Salam and J. Strathdee, Spontaneous, breakdown of conformal symmetry, Phys. Lett. B 31, 300 (1970). Google Scholar
  • 25. A. Borisov and V. Ogievetsky, Theory of dynamical affine and conformal symmetries as gravity theory of the gravitational field, Theor. Math. Phys. 21, 1179 (1975); V. Ogievetsky, Infinite-dimensional algebra of general covariance group as the closure of the finite dimensional algebras of conformal and linear groups, Nuovo Cimento 8, 988 (1973). Google Scholar
  • 26. D. V. Volkov, Phenomological Lagrangians, Sov. J. Part. Nucl. 4, 3 (1973). Google Scholar
  • 27. V. Kac, Graded Lie algebras and symmetric spaces, Funct. Anal. Appl. 2, 183 (1968); V. Kac, Infinite Dimensional Lie Algebras (Birkhauser, 1983). Google Scholar
  • 28. R. Moody, A new class of Lie algebras, J. Algebra 10, 211 (1968). Crossref, ISIGoogle Scholar
  • 29. P. West, Hidden superconformal symmetry in M theory, J. High Energy Phys. 0008, 007 (2000), arXiv:hep-th/0005270. Crossref, ISI, ADSGoogle Scholar
  • 30. P. West, E11 and M theory, Class. Quantum Grav. 18, 4443 (2001), arXiv:hep-th/0104081. Crossref, ISI, ADSGoogle Scholar
  • 31. P. West, E11, SL(32) and central charges, Phys. Lett. B 575, 333 (2003), arXiv:hep-th/0307098. Crossref, ISI, ADSGoogle Scholar
  • 32. A. Kleinschmidt and P. West, Representations of G+++ and the role of space-time, J. High Energy Phys. 0402, 033 (2004), arXiv:hep-th/0312247. Crossref, ADSGoogle Scholar
  • 33. P. Cook and P. West, Charge multiplets and masses for E11, J. High Energy Phys. 11, 091 (2008), arXiv:0805.4451. Crossref, ADSGoogle Scholar
  • 34. P. West, E11 origin of brane charges and U-duality multiplets, J. High Energy Phys. 0408, 052 (2004), arXiv:hep-th/0406150. Crossref, ADSGoogle Scholar
  • 35. T. Nutma, SimpLie, a simple program for Lie algebras, https://code.google.com/p/simplie/. Google Scholar
  • 36. F. Englert and L. Houart, G+++ invariant formulation of gravity and M-theories: Exact BPS solutions, J. High Energy Phys. 0401, 002 (2004), arXiv:hep-th/0311255. Crossref, ISI, ADSGoogle Scholar
  • 37. A. Salam, Gauge unification of fundamental forces, Nobel lecture on December 8, 1979, Rev. Mod. Phys. 52, 306 (1980). Google Scholar
  • 38. P. West, Generalised geometry, eleven dimensions and E11, J. High Energy Phys. 1202, 018 (2012), arXiv:1111.1642. Crossref, ISI, ADSGoogle Scholar
  • 39. A. Tumanov and P. West, Generalised vielbeins and non-linear realisations, J. High Energy Phys. 1410, 009 (2014), arXiv:1405.7894. Crossref, ISI, ADSGoogle Scholar
  • 40. A. Tumanov and P. West, E11 must be a symmetry of strings and branes, Phys. Lett. B 759, 663 (2016), arXiv:1512.01644. Crossref, ISI, ADSGoogle Scholar
  • 41. A. Tumanov and P. West, E11 in 11D, Phys. Lett. B 758, 278 (2016), arXiv:1601.03974. Crossref, ISI, ADSGoogle Scholar
  • 42. I. Schnakenburg and P. West, Kac–Moody symmetries of IIB supergravity, Phys. Lett. B 517, 421 (2001), arXiv:hep-th/0107181. Crossref, ISI, ADSGoogle Scholar
  • 43. P. West, The IIA, IIB and eleven dimensional theories and their common E11 origin, Nucl. Phys. B 693, 76 (2004), arXiv:hep-th/0402140. Crossref, ISI, ADSGoogle Scholar
  • 44. F. Riccioni and P. West, The E11 origin of all maximal supergravities, J. High Energy Phys. 0707, 063 (2007), arXiv:0705.0752. Crossref, ISI, ADSGoogle Scholar
  • 45. F. Riccioni and P. West, E11-extended spacetime and gauged supergravities, J. High Energy Phys. 0802, 039 (2008), arXiv:0712.1795. Crossref, ISI, ADSGoogle Scholar
  • 46. A. Kleinschmidt, I. Schnakenburg and P. West, Very-extended Kac–Moody algebras and their interpretation at low levels, Class. Quantum Grav. 21, 2493 (2004), arXiv:hep-th/0309198; P. West, E11, ten forms and supergravity, J. High Energy Phys. 0603, 072 (2006), arXiv:hep-th/0511153. Google Scholar
  • 47. P. West, E11, ten forms and supergravity, J. High Energy Phys. 0603, 072 (2006), arXiv:hep-th/0511153. Crossref, ADSGoogle Scholar
  • 48. P. Messen and T. Ortin, An SL(2,Z) multiplet of nine-dimensional type II supergravity theories, Nucl. Phys. B 541, 195 (1999), arXiv:hep-th/9806120; G. Dall’Agata, K. Lechner and M. Tonin, D = 10, N = IIB supergravity: Lorentz-invariant actions and duality, J. High Energy Phys. 9807, 017 (1998), arXiv:hep-th/9806140; E. Bergshoeff, U. Gran and D. Roest, Type IIB seven-brane solutions from nine-dimensional domain walls, Class. Quantum Grav. 19, 4207 (2002), arXiv:hep-th/0203202. Google Scholar
  • 49. E. A. Bergshoeff, M. de Roo, S. F. Kerstan and F. Riccioni, IIB supergravity revisited, J. High Energy Phys. 0508, 098 (2005), arXiv:hep-th/0506013; E. A. Bergshoeff, M. de Roo, S. F. Kerstan, T. Ortin and F. Riccioni, IIA ten-forms and the gauge algebras of maximal supergravity theories, J. High Energy Phys. 0607, 018 (2006), arXiv:hep-th/0602280. Google Scholar
  • 50. P. West, E11, generalised space-time and IIA string theory, Phys. Lett. B 696, 403 (2011), arXiv:1009.2624. Crossref, ISI, ADSGoogle Scholar
  • 51. W. Siegel, Two vielbein formalism for string inspired axionic gravity, Phys. Rev. D 47, 5453 (1993), arXiv:hep-th/9302036. Crossref, ISI, ADSGoogle Scholar
  • 52. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48, 2826 (1993), arXiv:hep-th/9305073; Manifest duality in low-energy superstrings, in Proceedings, Strings ’93, Berkeley, 1993, p. 353, arXiv:hep-th/9308133. Google Scholar
  • 53. O. Hohm and S. Kwak, Frame-like geometry of double field theory, J. Phys. A 44, 085404 (2011), arXiv:1011.4101. CrossrefGoogle Scholar
  • 54. A. Rocen and P. West, E11, generalised space-time and IIA string theory; the R R sector, in Strings, Gauge Fields and the Geometry Behind: The Legacy of Maximilian Kreuzer, eds. A. RebhanL. KatzarkovJ. KnappR. RashkovE. Scheid (World Scientific, 2013), arXiv:1012.2744. Google Scholar
  • 55. P. West, E11, generalised space-time and equations of motion in four dimensions, J. High Energy Phys. 1212, 068 (2012), arXiv:1206.7045. Crossref, ISI, ADSGoogle Scholar
  • 56. E. Bergshoeff, I. De Baetselier and T. Nutma, E11 and the embedding tensor, J. High Energy Phys. 0709, 047 (2007), arXiv:0705.1304. Crossref, ISI, ADSGoogle Scholar
  • 57. F. Riccioni, D. Steele and P. West, The E11 origin of all maximal supergravities — the hierarchy of field-strengths, J. High Energy Phys. 0909, 095 (2009), arXiv:0906.1177. Crossref, ISI, ADSGoogle Scholar
  • 58. F. Riccioni and P. West, Dual fields and E11, Phys. Lett. B 645, 286 (2007), arXiv:hep-th/0612001; F. Riccioni, D. Steele and P. West, Duality symmetries and G+++ theories, Class. Quantum Grav. 25, 045012 (2008), arXiv:0706.3659. Google Scholar
  • 59. L. J. Romans, Massive N = 2A supergravity in ten dimensions, Phys. Lett. B 169, 374 (1986). Crossref, ISI, ADSGoogle Scholar
  • 60. B. de Wit, H. Samtleben and M. Trigiante, The maximal D = 5 supergravities, Nucl. Phys. B 716, 215 (2005), arXiv:hep-th/0412173; B. de Wit and H. Samtleben, Gauged maximal supergravities and hierarchies of non-Abelian vector-tensor systems, Fortschr. Phys. 53, 442 (2005), arXiv:hep-th/0501243, and references therein. Google Scholar
  • 61. P. West, Brane dynamics, central charges and E11, J. High Energy Phys. 0503, 077 (2005), arXiv:hep-th/0412336. Crossref, ADSGoogle Scholar
  • 62. P. West, Very extended E8 and A8 at low levels, gravity and supergravity, Class. Quantum Grav. 20, 2393 (2003), arXiv:hep-th/0212291. Crossref, ISI, ADSGoogle Scholar
  • 63. P. West, E11 and higher spin theories, Phys. Lett. B 650, 197 (2007), arXiv:hep-th/0701026. Crossref, ISI, ADSGoogle Scholar
  • 64. D. Steele and P. West, E11 and supersymmetry, J. High Energy Phys. 1102, 101 (2011), arXiv:1011.5820. Crossref, ISI, ADSGoogle Scholar
  • 65. S. de Buyl, M. Henneaux and L. Paulot, Extended E8 invariance of 11-dimensional supergravity, J. High Energy Phys. 0602, 056 (2006), arXiv:hep-th/0512292; T. Damour, A. Kleinschmidt and H. Nicolai, Hidden symmetries and the fermionic sector of eleven-dimensional supergravity, Phys. Lett. B 634, 319 (2006), arXiv:hep-th/0512163; S. de Buyl, M. Henneaux and L. Paulot Hidden symmetries and Dirac fermions, Class. Quantum Grav. 22, 3595 (2005), arXiv:hep-th/0506009. Google Scholar
Published: 20 September 2016

Remember to check out the Most Cited Articles in IJMPA!

Boost your collection with these new physics books today!