World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Covariant phase space, constraints, gauge and the Peierls formula

    It is well known that both the symplectic structure and the Poisson brackets of classical field theory can be constructed directly from the Lagrangian in a covariant way, without passing through the noncovariant canonical Hamiltonian formalism. This is true even in the presence of constraints and gauge symmetries. These constructions go under the names of the covariant phase space formalism and the Peierls bracket. We review both of them, paying more careful attention, than usual, to the precise mathematical hypotheses that they require, illustrating them in examples. Also an extensive historical overview of the development of these constructions is provided. The novel aspect of our presentation is a significant expansion and generalization of an elegant and quite recent argument by Forger and Romero showing the equivalence between the resulting symplectic and Poisson structures without passing through the canonical Hamiltonian formalism as an intermediary. We generalize it to cover theories with constraints and gauge symmetries and formulate precise sufficient conditions under which the argument holds. These conditions include a local condition on the equations of motion that we call hyperbolizability, and some global conditions of cohomological nature. The details of our presentation may shed some light on subtle questions related to the Poisson structure of gauge theories and their quantization.

    PACS: 02.30.Jr, 03.50.-z, 04.20.Fy, 11.15.-q

    References

    • P. A. M.   Dirac , Lectures on Quantum Mechanics ( Dover Publications , 2001 ) . Google Scholar
    • M.   Henneaux and C.   Teitelboim , Quantization of Gauge Systems ( Princeton University Press , 1994 ) . Google Scholar
    • J.   Lee and R. M.   Wald , J. Math. Phys.   31 , 725 ( 1990 ) . Crossref, ISI, ADSGoogle Scholar
    • Č. Crnković and E. Witten, Three Hundred Years of Gravitation, eds. S. W. Hawking and W. Israel (Cambridge University Press, Cambridge, 1987) pp. 676–684. Google Scholar
    • G. J. Zuckerman, Mathematical Aspects of String Theory, ed. S. T. Yau (World Scientific, Singapore, 1987) pp. 259–284. LinkGoogle Scholar
    • R. E.   Peierls , Proc. R. Soc. Lond. A   214 , 143 ( 1952 ) . Crossref, ISI, ADSGoogle Scholar
    • B.   DeWitt , The Global Approach to Quantum Field Theory   I & II ( Oxford University Press , 2003 ) . Google Scholar
    • G.   Barnich , M.   Henneaux and C.   Schomblond , Phys. Rev. D   44 , R939 ( 1991 ) . Crossref, ISI, ADSGoogle Scholar
    • M.   Henneaux , Phys. Lett. B   238 , 299 ( 1990 ) . Crossref, ISI, ADSGoogle Scholar
    • M.   Forger and S. V.   Romero , Commun. Math. Phys.   256 , 375 ( 2005 ) ,   arXiv:math-ph/0408008 . Crossref, ISI, ADSGoogle Scholar
    • E.   Binz , J.   Śniatycki and H.   Fischer , Geometry of Classical Fields , Notas de Matemática   154 ( North-Holland , 1988 ) . Google Scholar
    • K.   Fredenhagen and K.   Rejzner , Commun. Math. Phys.   314 , 93 ( 2012 ) ,   arXiv:1101.5112v1 . Crossref, ISI, ADSGoogle Scholar
    • K. Rejzner, Batalin-Vilkovisky formalism in locally covariant field theory, Ph.D. thesis, Hamburg (2011) . Google Scholar
    • R. Brunetti, K. Fredenhagen and P. L. Ribeiro, Algebraic structure of classical field theory I: Kinematics and linearized dynamics for real scalar fields , arXiv:1209.2148 . Google Scholar
    • E. T.   Whittaker , A Treatise on the Analytical Dynamics of Particles and Rigid Bodies , 1st edn. ( Cambridge University Press , 1904 ) . Google Scholar
    • H.   Goldstein , Classical Mechanics , 2nd edn. ( Addison-Wesley , Reading, MA , 1980 ) . Google Scholar
    • R.   Abraham and J. E.   Marsden , Foundations of Mechanics ( Benjamin-Cummings , Reading , 1978 ) . Google Scholar
    • V. I.   Arnold , Mathematical Methods of Classical Mechanics , 2nd edn. , Graduate Texts in Mathematics   60 ( Springer , 1997 ) . Google Scholar
    • J. M.   Souriau , Structure des Systèmes Dynamiques ( Dunod , Paris , 1970 ) . Google Scholar
    • L.   Rosenfeld , Z. Phys.   65 , 589 ( 1930 ) . Crossref, ADSGoogle Scholar
    • J. L.   Lagrange , Mémoires de Classe des Sciences Mathématiques et Physiques de l'Institut National de France   1 ( 1808 ) . Google Scholar
    • V.   Glaser , H.   Lehmann and W.   Zimmermann , Il Nuovo Cimento   6 , 1122 ( 1957 ) . Crossref, ISI, ADSGoogle Scholar
    • I. E.   Segal , J. Math. Phys.   1 , 468 ( 1960 ) . Crossref, ISI, ADSGoogle Scholar
    • I. E.   Segal , Mathematical Problems of Relativistic Physics , Lectures in Applied Mathematics   1960 ( American Mathematical Society , Providence, RI , 1963 ) . Google Scholar
    • I. E. Segal, Application of Mathematics to Problems in Theoretical Physics, ed. F. Lurçat (Gordon and Breach, New York, 1967) pp. 107–170. Google Scholar
    • B. S. DeWitt, Relativity, Groups and Topology, eds. C. DeWitt and B. S. DeWitt (Gordon and Breach, New York, 1964) pp. 587–820. Google Scholar
    • O.   Steinmann , Perturbation Expansions in Axiomatic Field Theory , Lecture Notes in Physics   11 ( Springer-Verlag , Berlin , 1971 ) . Google Scholar
    • D. M. Marolf, Green's bracket algebras and their quantization, Ph.D. thesis, The University of Texas at Austin (1992) . Google Scholar
    • D.   Marolf , Ann. Phys.   236 , 374 ( 1994 ) ,   arXiv:hep-th/9308141 . Crossref, ISI, ADSGoogle Scholar
    • D.   Marolf , Ann. Phys.   236 , 392 ( 1994 ) ,   arXiv:hep-th/9308150 . Crossref, ISI, ADSGoogle Scholar
    • M.   Duetsch and K.   Fredenhagen , Commun. Math. Phys.   243 , 275 ( 2003 ) ,   arXiv:hep-th/0211242 . Crossref, ISI, ADSGoogle Scholar
    • F.   Brennecke and M.   Duetsch , Rev. Math. Phys.   20 , 119 ( 2008 ) ,   arXiv:0705.3160 . Link, ISI, ADSGoogle Scholar
    • K.   Rejzner , Rev. Math. Phys.   23 , 1009 ( 2011 ) ,   arXiv:1101.5126 . Link, ISI, ADSGoogle Scholar
    • T.-P.   Hack and A.   Schenkel , Gen. Relativ. Gravit.   45 , 877 ( 2013 ) ,   arXiv:1205.3484 . Crossref, ISI, ADSGoogle Scholar
    • P.   Bergmann and R.   Schiller , Phys. Rev.   89 , 4 ( 1953 ) . Crossref, ISI, ADSGoogle Scholar
    • A.   Komar , Phys. Rev.   134 , B1430 ( 1964 ) . Crossref, ISI, ADSGoogle Scholar
    • A.   Ashtekar and A.   Magnon , Proc. R. Soc. Lond. A   346 , 375 ( 1975 ) . Crossref, ISI, ADSGoogle Scholar
    • A. Ashtekar, private communication (2012) . Google Scholar
    • A.   Ashtekar , Phys. Rev. Lett.   46 , 573 ( 1981 ) . Crossref, ISI, ADSGoogle Scholar
    • J. L.   Friedman , Commun. Math. Phys.   62 , 247 ( 1978 ) . Crossref, ISI, ADSGoogle Scholar
    • J. L.   Friedman and B. F.   Schutz , Astrophys. J.   221 , 937 ( 1978 ) . Crossref, ISI, ADSGoogle Scholar
    • J. L. Friedman, private communication (2012) . Google Scholar
    • A. Trautman, General Relativity, Papers in Honour of J. L. Synge (Clarenden Press, Oxford, 1972) pp. 85–99. Google Scholar
    • E.   Noether , Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse   1918 , 235 ( 1918 ) . Google Scholar
    • P. Dedecker, Differential Geometrical Methods in Mathematical Physics, Lecture Notes in Mathematics 570, eds. K. Bleuler and A. Reetz (Springer, 1977) pp. 395–456. CrossrefGoogle Scholar
    • F. Takens, Geometry and Topology, Lecture Notes in Mathematics 597, eds. J. Palis and M. do Carmo (Springer, 1977) pp. 581–604. CrossrefGoogle Scholar
    • H.   Goldschmidt and S.   Sternberg , Ann. Inst. Fourier   23 , 203 ( 1973 ) . CrossrefGoogle Scholar
    • M.   Henneaux , Ann. Phys.   140 , 45 ( 1982 ) . Crossref, ISI, ADSGoogle Scholar
    • M. Henneaux, private communication (2013) . Google Scholar
    • E.   Witten , Nucl. Phys. B   276 , 291 ( 1986 ) . Crossref, ISI, ADSGoogle Scholar
    • S. Sternberg, Differential Geometrical Methods in Mathematical Physics II, Lecture Notes in Mathematics 676, eds. K. Bleuler, A. Reetz and H. Petry (Springer, 1978) pp. 399–407. CrossrefGoogle Scholar
    • P. Deligne and D. S. Freed, Quantum Fields and Strings: A Course for Mathematicians, eds. P. Deligneet al. (AMS, Providence, RI, 1999) pp. 137–225. Google Scholar
    • Č.   Crnković , Class. Quantum Grav.   5 , 1557 ( 1988 ) . Crossref, ISI, ADSGoogle Scholar
    • A. Ashtekar, L. Bombelli and O. Reula, Mechanics, Analysis and Geometry: 200 Years after Lagrange, eds. M. Francaviglia and D. Holm (North-Holland, Amsterdam, 1991) pp. 417–450. CrossrefGoogle Scholar
    • S.   Hollands and D.   Marolf , Class. Quantum Grav.   24 , 2301 ( 2007 ) ,   arXiv:gr-qc/0611044 . Crossref, ISI, ADSGoogle Scholar
    • G.   Barnich and F.   Brandt , Nucl. Phys. B   633 , 3 ( 2002 ) ,   arXiv:hep-th/0111246 . Crossref, ISI, ADSGoogle Scholar
    • P.   Bergmann et al. , Phys. Rev.   103 , 807 ( 1956 ) . Crossref, ISI, ADSGoogle Scholar
    • C.   Baer , N.   Ginoux and F.   Pfaeffle , Wave Equations on Lorentzian Manifolds and Quantization , ESI Lectures in Mathematics and Physics   2 ( European Mathematical Society , 2007 ) . CrossrefGoogle Scholar
    • C. Baer, Green-hyperbolic operators on globally hyperbolic spacetimes , arXiv:1310.0738 . Google Scholar
    • I. Khavkine, Characteristics, conal geometry and causality in locally covariant field theory , arXiv:1211.1914 . Google Scholar
    • N.   Ginoux , Quantum Field Theory on Curved Spacetimes: Concepts and Methods , Lecture Notes in Physics   786 , eds. C.   Baer and K.   Fredenhagen ( Springer , 2009 ) . CrossrefGoogle Scholar
    • H.   Ringström , The Cauchy Problem in General Relativity , ESI Lectures in Mathematics and Physics   6 ( European Mathematical Society , 2009 ) . CrossrefGoogle Scholar
    • S. Waldmann, Geometric wave equations , arXiv:1208.4706 . Google Scholar
    • R. M.   Wald , Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics , 1st edn. , Chicago Lectures in Physics ( University of Chicago Press , 1994 ) . Google Scholar
    • K.   Sanders , Class. Quantum Grav.   30 , 115014 ( 2012 ) ,   arXiv:1211.2469 . Crossref, ISI, ADSGoogle Scholar
    • H.   Goldschmidt , J. Diff. Geom.   1 , 269 ( 1967 ) . CrossrefGoogle Scholar
    • H.   Goldschmidt , Ann. Math.   86 , 246 ( 1967 ) . Crossref, ISIGoogle Scholar
    • J.-F.   Pommaret , Systems of Partial Differential Equations and Lie Pseudogroups ( Gordon and Breach , New York , 1978 ) . Google Scholar
    • R. S.   Palais , Seminar on the Atiyah-Singer Index Theorem , Annals of Mathematics Studies   57 ( Princeton University Press , 1965 ) . CrossrefGoogle Scholar
    • R.   Courant and D.   Hilbert , Methods of Mathematical Physics   1 ( John Wiley & Sons , 2008 ) . Google Scholar
    • I. M. Anderson, The variational bicomplex (1989), informally distributed book draft (unpublished) . Google Scholar
    • G.   Giachetta , L.   Mangiarotti and G.   Sardanashvily , J. Math. Phys.   42 , 4272 ( 2001 ) ,   arXiv:math/0006074 . Crossref, ISI, ADSGoogle Scholar
    • I. M. Anderson, Mathematical Aspects of Classical Field Theory, Contemporary Mathematics 132, eds. M. J. Gotay, J. E. Marsden and V. Moncrief (American Mathematical Society, Providence, 1992) pp. 51–73. CrossrefGoogle Scholar
    • I.   Khavkine , J. Math. Phys.   54 , 111502 ( 2013 ) ,   arXiv:1210.0802 . Crossref, ISI, ADSGoogle Scholar
    • R.   Geroch , Partial differential equations of physics , Proc. Forty-Sixth Scottish Summer School in Physics , eds. G. S.   Hall and J. R.   Pulham ( SUSSP Publications , Edinburgh , 1996 ) ,   arXiv:gr-qc/9602055 . Google Scholar
    • K. Sanders, C. Dappiaggi and T.-P. Hack, Electromagnetism, local covariance, the Aharonov–Bohm effect and Gauss' law , arXiv:1211.6420 . Google Scholar
    • C.   Dappiaggi , Rev. Math. Phys.   23 , 1035 ( 2011 ) . Link, ISI, ADSGoogle Scholar
    • R. M.   Wald , General Relativity , 1st edn. ( University of Chicago Press , Chicago , 1984 ) . CrossrefGoogle Scholar
    • C. J.   Fewster and D. S.   Hunt , Rev. Math. Phys.   25 , 1330003 ( 2013 ) ,   arXiv:1203.0261 . Link, ISI, ADSGoogle Scholar
    • E. Calabi, Differential Geometry, Proceedings of Symposia in Pure Mathematics 3, ed. C. B. Allendoerfer (AMS, Providence, 1961) pp. 155–180. CrossrefGoogle Scholar
    • I. Khavkine, Cohomology with causally restricted supports (in preparation) . Google Scholar
    • G.   Grubb , Distributions and Operators , Graduate Texts in Mathematics   252 ( Springer , Berlin , 2009 ) . Google Scholar
    • P. J.   Olver , Applications of Lie Groups to Differential Equations , 2nd edn. , Graduate Texts in Mathematics   107 ( Springer-Verlag , New York , 1993 ) . CrossrefGoogle Scholar
    • I.   Kolař , P. W.   Michor and J.   Slovák , Natural Operations in Differential Geometry ( Springer , 1993 ) . CrossrefGoogle Scholar
    • D.   Spring , Convex Integration Theory: Solutions to the H-Principle in Geometry and Topology , Monographs in Mathematics   92 ( Birkhäuser , 1998 ) . CrossrefGoogle Scholar
    • W. M.   Seiler , Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra , Algorithms and Computation in Mathematics   24 ( Springer , 2010 ) . CrossrefGoogle Scholar
    • R. L.   Bryant et al. , Exterior Differential Systems , Mathematical Sciences Research Institute Publications   18 ( Springer , 2011 ) . Google Scholar
    • A. M.   Vinogradov and I. S.   Krasilshchik (eds.) , Symmetries and Conservation Laws for Differential Equations of Mathematical Physics , Translations of Mathematical Monographs   182 ( American Mathematical Society , Providence, RI , 1999 ) . Google Scholar
    • N. N.   Tarkhanov , Complexes of Differential Operators , Mathematics and Its Applications   340 ( Springer , Netherlands, Dordrecht , 1995 ) . CrossrefGoogle Scholar
    • L.   Hörmander , The Analysis of Linear Partial Differential Operators III , Grundlehren Der Mathematischen Wissenschaften   274 ( Springer , 1985 ) . Google Scholar
    • R. T.   Smith , Bull. Amer. Math. Soc.   82 , 297 ( 1976 ) . Crossref, ISIGoogle Scholar
    • S. W.   Hawking and G. F. R.   Ellis , The Large Scale Structure of Space-Time ( Cambridge University Press , Cambridge , 1973 ) . CrossrefGoogle Scholar
    • R. Beig, Analytical and Numerical Approaches to Mathematical Relativity, Lecture Notes in Physics 692, eds. J. Frauendiener, D. Giulini and V. Perlick (Springer, Berlin, 2006) pp. 101–116. CrossrefGoogle Scholar
    • J. D.   Lawson , Forum Mathematicum   1 , 273 ( 1989 ) . CrossrefGoogle Scholar
    • K. H.   Neeb , Inventiones Mathematicae   104 , 467 ( 1991 ) . Crossref, ISI, ADSGoogle Scholar
    • R.   Penrose , Techniques in Differential Topology in Relativity , CBMS-NSF Regional Conference Series in Applied Mathematics   7 ( Society for Industrial and Applied Mathematics , Philadelphia, PA , 1972 ) . CrossrefGoogle Scholar
    • R.   Geroch , J. Math. Phys.   11 , 437 ( 1970 ) . Crossref, ISI, ADSGoogle Scholar
    • A.   García-Parrado and J. M. M.   Senovilla , Class. Quantum Grav.   22 , R1 (2005 ,   arXiv:gr-qc/0501069 . Google Scholar
    • U.   Bannier , Commun. Math. Phys.   118 , 163 ( 1988 ) . Crossref, ISI, ADSGoogle Scholar
    • M.   Rainer , J. Math. Phys.   40 , 6589 ( 1999 ) ,   arXiv:gr-qc/9905106 . Crossref, ISI, ADSGoogle Scholar
    • M.   Rainer , Class. Quantum Grav.   17 , 1935 ( 2000 ) ,   arXiv:gr-qc/9911076 . Crossref, ISI, ADSGoogle Scholar
    • R. T.   Rockafellar , Convex Analysis , Princeton Mathematical Series   28 ( Princeton University Press , 1996 ) . Google Scholar
    • A. N.   Bernal and M.   Sánchez , Commun. Math. Phys.   257 , 43 ( 2005 ) ,   arXiv:gr-qc/0401112 . Crossref, ISI, ADSGoogle Scholar
    • A.   Bernal and M.   Sánchez , Lett. Math. Phys.   77 , 183 ( 2006 ) ,   arXiv:gr-qc/0512095 . Crossref, ISI, ADSGoogle Scholar
    • A.   Fathi and A.   Siconolfi , Math. Proc. Cambr. Philos. Soc.   152 , 303 ( 2011 ) . Crossref, ISIGoogle Scholar
    Published: 19 February 2014
    Recently Reviewed


    Essential Classical Mechanics

    The authors deliver a highly readable text which should assure a continued supply of practitioners of classical mechanics and its applications.

    Contemporary Physics