World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

REVISITING (QUASI-)EXACTLY SOLVABLE RATIONAL EXTENSIONS OF THE MORSE POTENTIAL

    The construction of rationally-extended Morse potentials is analyzed in the framework of first-order supersymmetric quantum mechanics. The known family of extended potentials VA, B, ext(x), obtained from a conventional Morse potential VA-1, B(x) by the addition of a bound state below the spectrum of the latter, is reobtained. More importantly, the existence of another family of extended potentials, strictly isospectral to VA+1, B(x), is pointed out for a well-chosen range of parameter values. Although not shape invariant, such extended potentials exhibit a kind of "enlarged" shape invariance property, in the sense that their partner, obtained by translating both the parameter A and the degree m of the polynomial arising in the denominator, belongs to the same family of extended potentials. The point canonical transformation connecting the radial oscillator to the Morse potential is also applied to exactly solvable rationally-extended radial oscillator potentials to build quasi-exactly solvable rationally-extended Morse ones.

    PACS: 03.65.Fd, 03.65.Ge

    References

    Published: 11 May 2012
    Recently Reviewed


    Essential Classical Mechanics

    The authors deliver a highly readable text which should assure a continued supply of practitioners of classical mechanics and its applications.

    Contemporary Physics