World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Elementary Particles and FieldsNo Access

TOPOLOGICAL LATTICE MODELS IN FOUR DIMENSIONS

    We define a lattice statistical model on a triangulated manifold in four dimensions associated to a group G. When G=SU(2), the statistical weight is constructed from the 15j-symbol as well as the 6j-symbol for recombination of angular momenta, and the model may be regarded as the four-dimensional version of the Ponzano-Regge model. We show that the partition function of the model is invariant under the Alexander moves of the simplicial complex, thus it depends only on the piecewise linear topology of the manifold. For an orientable manifold, the model is related to the so-called BF model. The q-analog of the model is also constructed, and it is argued that its partition function is invariant under the Alexander moves. It is discussed how to realize the 't Hooft operator in these models associated to a closed surface in four dimensions as well as the Wilson operator associated to a closed loop. Correlation functions of these operators in the q-deformed version of the model would define a new type of invariants of knots and links in four dimensions.

    Dedicated to Professors Huzihiro Araki and Noboru Nakanishi on the occasion of their sixtieth birthdays

    Recently Reviewed


    Essential Classical Mechanics

    The authors deliver a highly readable text which should assure a continued supply of practitioners of classical mechanics and its applications.

    Contemporary Physics