Effect of the Wigner–Dunkl algebra on the Dirac equation and Dirac harmonic oscillator
Abstract
In this work, we study the Dirac equation and Dirac harmonic oscillator in one-dimensional via the Dunkl algebra. By using Dunkl derivative, we solve the momentum operator and Hamiltonian that include the reflection symmetry. Based on the concept of the Wigner–Dunkl algebra and the functional analysis method, we have obtained the energy eigenvalue equation and the corresponding wave function for Dirac harmonic oscillator and Dirac equation, respectively. It is shown all results in the limit state satisfied what we had expected before.
References
- 1. , Lett. Math. Phys. 11, 247 (1986). Crossref, Web of Science, ADS, Google Scholar
- 2. , in Proc. Int. Congress of Mathematicians,
Berkeley ,1986 , ed. A. M. Gleason (American Mathematical Society, Providence, 1987). Google Scholar - 3. , J. Math. Phys. 17, 524 (1976). Crossref, Web of Science, ADS, Google Scholar
- 4. , J. Phys. A 22, 4581 (1989). Crossref, ADS, Google Scholar
- 5. , J. Phys. A 22, L873 (1989). Crossref, ADS, Google Scholar
- 6. , J. Phys. A: Math. Gen. 22, L817 (1989). Crossref, ADS, Google Scholar
- 7. , Phys. Rep. 414, 165 (2005). Crossref, Web of Science, ADS, Google Scholar
- 8. , Phys. Lett. B 425, 1 (1998). Crossref, Web of Science, ADS, Google Scholar
- 9. N. Hatami and M. R. Setare, Phys. Lett. A, https://doi.org/10.1016/j.physleta.2016.08.049 (2016). Google Scholar
- 10. A. Boumali and H. Hassanabadi, Adv. High Energy Phys., https://doi.org/10.1155/2017/9371391 (2017). Google Scholar
- 11. , J. Phys. Conf. Ser. 512, 012010 (2014). Crossref, Google Scholar
- 12. V. X. Genest, M. E. H. Ismail, L. Vinet and A. Zhedanov, Commun. Math. Phys., https://doi.org/10.1007/s00220-014-1915-2, to appear (2013). Google Scholar
- 13. , SIGMA 9, 18 (2013). Google Scholar
- 14. , J. Phys. A: Math. Theor. 46, 145201 (2013). Crossref, Web of Science, ADS, Google Scholar
- 15. , Phys. Rev. 77, 711 (1950). Crossref, Web of Science, ADS, Google Scholar
- 16. , T. Am. Math. Soc. 311, 167 (1989). Crossref, Web of Science, Google Scholar
- 17. , Math. Z. 197, 33 (1988). Crossref, Web of Science, Google Scholar
- 18. (Eds.) L. Vinet and J. F. Van Diejen, Calogero-Mosersutherland Models (Springer, 2000). Google Scholar
- 19. , Prog. Math. 101, 181 (1991). Crossref, Google Scholar
- 20. , Approximation Theory and Harmonic Analysis on Spheres and Balls (Springer, 2013). Crossref, Google Scholar
- 21. , Modern Quantum Mechanics, ISBN 0-201-53929-2 (1994). Google Scholar
- 22. , Phys. Rev. 84, 788 (1951). Crossref, Web of Science, ADS, Google Scholar
- 23. W. S. Chung and H. Hassanabadi, Int. J. Geom. Methods Mod. Phys., https://doi.org/10.1142/S0219887818501232 (2018). Google Scholar
- 24. S. Sargolzaeipor, H. Hassanabadi and W. S. Chung, Can. J. Phys., https://doi.org/10.1139/cjp-2016-0875 (2017). Google Scholar
- 25. , J. Math. Phys. 49, 022302 (2008). Crossref, Web of Science, Google Scholar
- 26. , J. Math. Phys. 54, 099902 (2013). Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Boost your collection with these new physics books today! |