Phase transition and universality of the three-one spin interaction based on the majority-rule model
Abstract
In this work, we study the opinion dynamics of majority-rule model on a complete graph with additional social behavior namely anticonformity. We consider four spins with three-one interaction; three spins persuade the fourth spin in the population. We perform analytical and numerical calculations to find the critical behavior of the system. From both, we obtained the agreement results, e.g. the system undergoes a second-order phase transition and the critical point of the system only depends on the population number. In addition, the critical point decays exponentially as the number population increases. For the infinite population, the obtained critical point is , which agrees well with that of the previous work. We also obtained the critical exponents and of the model, thus, the model is in the same universality class with the mean-field Ising.
References
- 1. , Sociophysics: A Physicist’s Modeling of Psycho-political Phenomena (Springer-Verlag, New York, 2012). Crossref, Google Scholar
- 2. , Sociophysics: An Introduction (Oxford University Press, Oxford, 2014). Google Scholar
- 3. F. Abergel, B. K. Chakrabarti, A. Chakraborti, N. Deo and K. Sharma eds., New Perspectives and Challenges in Econophysics and Sociophysics (Springer, Switzerland, 2019). Crossref, Google Scholar
- 4. , Rev. Mod. Phys. 81, 591 (2009). Crossref, Web of Science, ADS, Google Scholar
- 5. , Int. J. Mod. Phys. C 11, 1157 (2000). Link, Web of Science, ADS, Google Scholar
- 6. , Ann. Probab. 3, 643 (1975). Crossref, Web of Science, Google Scholar
- 7. , A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010). Crossref, Google Scholar
- 8. , Europhys. Lett. 82, 18007 (2008). Crossref, ADS, Google Scholar
- 9. , Phys. Rev. E 80, 041129 (2009). Crossref, Web of Science, ADS, Google Scholar
- 10. , Phys. Rev. E 86, 011105 (2012). Crossref, Web of Science, ADS, Google Scholar
- 11. , Phys. Rev. E 92, 052812 (2015). Crossref, Web of Science, ADS, Google Scholar
- 12. , Phys. Rev. E 80, 027101 (2009). Crossref, Web of Science, ADS, Google Scholar
- 13. , Z. Phys. 31, 253 (1925). Crossref, ADS, Google Scholar
- 14. , J. Math. Psychol. 30, 426 (1986). Crossref, Web of Science, Google Scholar
- 15. , Physica A 274, 132 (1999). Crossref, Web of Science, ADS, Google Scholar
- 16. , Eur. Phys. J. B 25, 403 (2002). Crossref, Web of Science, ADS, Google Scholar
- 17. , Int. J. Mod. Phys. C 19, 409 (2008). Link, Web of Science, ADS, Google Scholar
- 18. , Phys. Rev. E 71, 036101 (2005). Crossref, Web of Science, ADS, Google Scholar
- 19. , Phys. Lett. A 382, 1509 (2018). Crossref, Web of Science, ADS, Google Scholar
- 20. , Psychol. Bull. 126, 454 (2000). Crossref, Web of Science, Google Scholar
- 21. , Phys. Rev. Lett. 90, 238701 (2003). Crossref, Web of Science, ADS, Google Scholar
- 22. , Physica A 450, 30 (2016). Crossref, Web of Science, ADS, Google Scholar
- 23. , Phys. Rev. E 92, 062122 (2015). Crossref, Web of Science, ADS, Google Scholar
- 24. , J. Statist. Phys. 151, 174 (2013). Crossref, Web of Science, ADS, Google Scholar
- 25. , Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996). Crossref, Google Scholar
- 26. , Physica A 391, 317 (2012). Crossref, Web of Science, ADS, Google Scholar
- 27. , Zh. Eksp. Teor. Fiz. 7, 19 (1937). Google Scholar
- 28. , Int. J. Mod. Phys. C 31, 2050052 (2020). Link, Web of Science, ADS, Google Scholar
- 29. , Phys. Rev. E 84, 056106 (2011). Crossref, Web of Science, ADS, Google Scholar
- 30. , Physica A 391, 3257 (2012). Crossref, Web of Science, ADS, Google Scholar
- 31. , Phys. Rev. E 86, 061127 (2012). Crossref, Web of Science, ADS, Google Scholar
- 32. , Phys. Lett. A 378, 1683 (2014). Crossref, Web of Science, Google Scholar
You currently do not have access to the full text article. |
---|