World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Homology modeling of mouse NLRP3 NACHT protein domain and molecular dynamics simulation of its ATP binding properties

    Gout is an extremely painful form of inflammatory arthritis, caused by the formation of monosodium urate (MSU) crystals in the joints. MSU crystals are one of the triggers for the activation of nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3) inflammasome (NACHT, LRR and PYD domains-containing protein), which in turn induces caspase-1 activation and a nonspecific immune responses that cause inflammation. Further structural studies and ligand designs are needed to block the interaction of NLRP3 with MSU or allow the interaction without activating caspase-1. This would facilitate the screening of new drugs for the treatment of gout. Using computational methods for homology modeling and molecular dynamics simulations, the structural model of mouse NLRP3 protein with its domains, three potential structural models were consistently constructed and tested to find the most stable structural model. Adenosine triphosphate (ATP) — an activator of NACHT (the central domain of mouse NLRP3 protein) — was docked and simulated. Ligand effects to activate as well as limit this protein were analyzed. This study provides insights to deeper understanding about gout development pathway via the NLRP3 protein.

    PACS:, 87.15.ap, 87.14.E, 07.05.Tp


    Published: 8 January 2020
    You currently do not have access to the full text article.

    Recommend the journal to your library today!