World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Role of radiation in heat transfer from nanoparticles to gas media in photothermal measurements

    The heat transfer from nanoparticles (NPs) to gas of photothermal effect is investigated by taking into account both conduction and radiation. The steady-state and unsteady-state heat transfer processes are studied analytically and numerically, respectively. In contrast to the photothermal effect in liquid with metal NPs, in which the radiation is negligible, we found that the thermal radiation must be taken into account in the nanoparticle–gas system. The reason is that the thermal boundary conductance (TBC) of gas–solid interface is several orders of magnitude smaller than the TBC of liquid–solid interface, especially when the diameter of nanoparticle is comparable to or smaller than the mean free path of gas molecules. We propose a method to measure the ultra-low TBC of interface between nanoparticle and gas based on our investigations.

    PACS: 78.20.Nv, 65.80.+n, 68.03.−g, 68.08.−f, 44.40.+a


    • 1. R. T. Bailey, S. Bernegger, D. Bicanic et al., Photoacoustic, Photothermal and Photochemical Processes in Gases, ed. P. Hess (Springer-Verlag, Berlin Heidelberg, 1989). Google Scholar
    • 2. S. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (John Wiley and Sons, 1996). CrossrefGoogle Scholar
    • 3. A. Gaiduk, M. Yorulmaz, P. V. Ruijgrok and M. Orrit, Science 330, 353 (2010). Crossref, ADSGoogle Scholar
    • 4. P. Zijlstra, P. M. R. Paulo and M. Orrit, Nat. Nanotechnol. 7, 379 (2012). Crossref, ISI, ADSGoogle Scholar
    • 5. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat and B. Lounis, Proc. Natl. Acad. Sci. 100, 11350 (2003). Crossref, ISI, ADSGoogle Scholar
    • 6. W.-S. Chang, J. W. Ha, L. S. Slaughter and S. Link, Proc. Natl. Acad. Sci. 107, 2781 (2010). Crossref, ADSGoogle Scholar
    • 7. H.-R. Jiang, N. Yoshinaga and M. Sano, Phys. Rev. Lett. 105, 268302 (2010). Crossref, ADSGoogle Scholar
    • 8. D. Boyer, P. Tamarat, A. Maali, B. Lounis and M. Orrit, Science 297, 1160 (2002). Crossref, ADSGoogle Scholar
    • 9. A. Gaiduk, P. V. Ruijgrok, M. Yorulmaz and M. Orrit, Chem. Sci. 1, 343 (2010). CrossrefGoogle Scholar
    • 10. O. M. Wilson, X. Hu, D. G. Cahill and P. V. Braun, Phys. Rev. B 66, 224301 (2002). Crossref, ADSGoogle Scholar
    • 11. A. Plech, V. Kotaidis, S. Grésillon, C. Dahmen and G. von Plessen, Phys. Rev. B 70, 195423 (2004). Crossref, ADSGoogle Scholar
    • 12. M. G. Gonzalez, E. O. Acosta and G. D. Santiago, Appl. Opt. 57, 6229 (2018). Crossref, ADSGoogle Scholar
    • 13. J. Huang, J. Park, W. Wang, C. J. Murphy and D. G. Cahill, Acs Nano 7, 589 (2012); X. Wu, Y. Ni, J. Zhu, N. D. Burrows, C. J. Murphy, T. Dumitrica and X. Wang, ACS Appl. Mater. Interf. 8, 10581 (2016). Google Scholar
    • 14. M. Hu, D. Poulikakos, C. P. Grigoropoulos and H. Pan, J. Chem. Phys. 132, 164504 (2010). Crossref, ADSGoogle Scholar
    • 15. L. Zhang, Private Communications. Google Scholar
    • 16. H. Petrova, J. P. Juste, I. Pastoriza-Santos, G. V. Hartland, L. M. Liz-Marzán and P. Mulvaney, Phys. Chem. Chem. Phys. 8, 814 (2006). CrossrefGoogle Scholar
    • 17. A. O. Govorov and H. H. Richardson, Nano Today 2, 30 (2007). Crossref, ISIGoogle Scholar
    • 18. K. Jiang, D. A. Smith and A. Pinchuk, J. Phys. Chem. C 117, 27073 (2013). CrossrefGoogle Scholar
    • 19. V. K. Pustovalov, A. S. Smetannikov and V. P. Zharov, Laser Phys. Lett. 5, 775 (2008). CrossrefGoogle Scholar
    • 20. Y. A. Cengel and A. J. Ghajar, Heat and Mass Transfer: Fundamentals and Applications (McGraw-Hill Higher Education, 2015), p. 76. Google Scholar
    • 21. D. Werner and S. Hashimoto, J. Phys. Chem. C 115, 5063 (2011). CrossrefGoogle Scholar
    • 22. R. S. Quimby and W. M. Yen, J. Appl. Phys. 52, 500 (1981). Crossref, ADSGoogle Scholar
    • 23. F. O. Goodman, Prog. Surf. Sci. 5, 261 (1974). Crossref, ADSGoogle Scholar
    • 24. G. S. Springer, Adv. Heat Trans. 7, 163 (1971). CrossrefGoogle Scholar
    • 25. C. A. S. Lima, L. C. M. Miranda and R. Santos, J. Appl. Phys. 52, 137 (1981). Crossref, ADSGoogle Scholar
    • 26. A. Rosencwaig, J. Appl. Phys. 52, 503 (1981). Crossref, ADSGoogle Scholar
    • 27. J.-P. Monchalin, J.-L. Parpal, L. Bertrand and J.-M. Gagné, J. Appl. Phys. 53, 8525 (1982). Crossref, ADSGoogle Scholar
    • 28. L. Lees, J. Soc. Ind. Appl. Math. 13, 278 (1965). CrossrefGoogle Scholar
    • 29. G. S. Springer and S. W. Tsai, Phys. Fluids 8, 1561 (1965). Crossref, ADSGoogle Scholar
    • 30. H. Mikami, Y. Endo and Y. Takashima, Int. J. Heat Mass Transf. 9, 1435 (1966). CrossrefGoogle Scholar
    • 31. M. Hu, S. Shenogin, P. Keblinski and N. Raravikar, Appl. Phys. Lett. 91, 131905 (2007). Crossref, ADSGoogle Scholar
    • 32. M. Kaviany, Heat Transfer Physics (Cambridge University Press, 2008), p. 410. CrossrefGoogle Scholar
    • 33. M. Hu and G. V. Hartland, J. Phys. Chem. B 106, 7029 (2002). CrossrefGoogle Scholar
    Published: 26 April 2019
    You currently do not have access to the full text article.

    Recommend the journal to your library today!