Self-time-delay synchronization of time-delay coupled complex chaotic system and its applications to communication
Abstract
Considering the time lag produced by the transmission in chaos-communication, we present self-time-delay synchronization (STDS) of complex chaotic systems. STDS implies that the synchronization between the time-delay system (the receiver) and the original system (the transmitter) while maintaining the structure and parameters of systems unchanged, thus these various problems produced by time-delay in practice are avoided. It is more suitable to simulate real communication situation. Aimed to time-delay coupled complex chaotic systems, the control law is derived by active control technique. Based on STDS, a novel communication scheme is further designed according to chaotic masking. In simulation, we take time-delay coupled complex Lorenz system transmitting actual speech signal (analog signal) and binary signal as examples. The speech signal contains two components, which are transmitted by the real part and imaginary part of one complex state variable. Two sequences of binary bits are converted into analog signals by 2M-ary and zero-order holder, then added into the real part and imaginary part of one complex state variable. Therefore, the STDS controller is realized by one critical state variable. It is simple in principle and easy to implement in engineering. Moreover, the communication system is robust to noise. It is possible to adopt cheap circuits with time-delay, which is economical and practical for communication.
References
- Physica D 4, 139 (1982), DOI: 10.1016/0167-2789(82)90057-4. Web of Science, ADS, Google Scholar
- Phys. Rev. A 41, 3827 (1990). Google Scholar
- Int. J. Bifurcat Chaos 17, 4295 (2007), DOI: 10.1142/S0218127407019962. Link, Web of Science, Google Scholar
- Nonlinear Dyn. 71, 241 (2013), DOI: 10.1007/s11071-012-0656-z. Web of Science, Google Scholar
- Int. J. Mod. Phys.C 24, 1350025 (2013), DOI: 10.1142/S0129183113500253. Link, Web of Science, Google Scholar
- Appl. Math. Comput. 217, 2481 (2010), DOI: 10.1016/j.amc.2010.07.059. Web of Science, Google Scholar
- Nonlinear Dyn. 61, 141 (2010), DOI: 10.1007/s11071-009-9637-2. Web of Science, Google Scholar
- Nonlinear Dyn. 62, 875 (2010), DOI: 10.1007/s11071-010-9770-y. Web of Science, Google Scholar
- Nonlinear Anal. Real World Appl. 12, 3046 (2011), DOI: 10.1016/j.nonrwa.2011.05.006. Web of Science, Google Scholar
- Phys. Scr. 83, 065006 (2011), DOI: 10.1088/0031-8949/83/06/065006. Web of Science, Google Scholar
- Nonlinear Dyn. 67, 1613 (2012), DOI: 10.1007/s11071-011-0091-6. Web of Science, Google Scholar
- Math. Comput. Simulat. 80, 2286 (2010), DOI: 10.1016/j.matcom.2010.03.012. Web of Science, Google Scholar
H. L. Zhu , Adaptive modified function projective synchronization of a new chaotic complex system with uncertain parameters, ICCRD: 3rd Int. Conf. on Computer Research Development4 (Shanghai, 2011) pp. 451–455. Google Scholar- Phys. Scr. 85, 035005 (2012), DOI: 10.1088/0031-8949/85/03/035005. Web of Science, Google Scholar
- Nonlinear Dyn. 70, 585 (2012), DOI: 10.1007/s11071-012-0479-y. Web of Science, Google Scholar
- C. Luo and Wang X. Y., J. Franklin Inst., http://dx.doi.org/10.1016/j.jfranklin.2013.06.011 (2013) . Google Scholar
- Math. Comput. Simulat. 89, 69 (2013), DOI: 10.1016/j.matcom.2013.02.008. Web of Science, Google Scholar
- Chin. Phys. B 22, 000001 (2013). Web of Science, Google Scholar
- Automatica 36, 613 (2000), DOI: 10.1016/S0005-1098(99)00150-8. Web of Science, Google Scholar
- Int. J. Bifurcat. Chaos 11, 1707 (2001). Link, Web of Science, Google Scholar
- Physica A 375, 467 (2007), DOI: 10.1016/j.physa.2006.09.020. Web of Science, ADS, Google Scholar
- Phys. Rev. E 66, 046218 (2002), DOI: 10.1103/PhysRevE.66.046218. Web of Science, Google Scholar
- Chaos Soliton Fractals 22, 477 (2004), DOI: 10.1016/j.chaos.2004.02.019. Web of Science, ADS, Google Scholar
- IEEE Proc. Circuits Devices Syst. 153, 357 (2006), DOI: 10.1049/ip-cds:20050139. Web of Science, Google Scholar
- Phys. Lett. A 374, 2925 (2010), DOI: 10.1016/j.physleta.2010.05.024. Web of Science, Google Scholar
- Commun. Nonlinear Sci. Numer. Simulat. 17, 4707 (2012), DOI: 10.1016/j.cnsns.2011.05.030. Web of Science, ADS, Google Scholar
- Phys. Scr. 87, 055002 (2013), DOI: 10.1088/0031-8949/87/05/055002. Web of Science, Google Scholar
- Phys. Rev. Lett. 64, 821 (1990), DOI: 10.1103/PhysRevLett.64.821. Web of Science, ADS, Google Scholar
- Nature 410, 277 (2001), DOI: 10.1038/35065745. Web of Science, ADS, Google Scholar
- Chaos Soliton Fractals 22, 767 (2004), DOI: 10.1016/j.chaos.2004.03.023. Web of Science, ADS, Google Scholar
- Commun. Nonlinear Sci. Numer. Simulat. 14, 1502 (2009), DOI: 10.1016/j.cnsns.2008.01.012. Web of Science, ADS, Google Scholar
- Digit. Signal Process 20, 229 (2010), DOI: 10.1016/j.dsp.2009.04.006. Web of Science, ADS, Google Scholar
- Nonlinear Anal. Real World Appl. 12, 1288 (2011), DOI: 10.1016/j.nonrwa.2010.09.026. Web of Science, Google Scholar
- Int. J. Mod. Phys. C 18, 795 (2007), DOI: 10.1142/S0129183107010565. Link, Web of Science, ADS, Google Scholar
- Nonlinear Dyn. 55, 43 (2009), DOI: 10.1007/s11071-008-9343-5. Web of Science, Google Scholar
- Phys. Lett A 329, 301 (2004), DOI: 10.1016/j.physleta.2004.06.077. Web of Science, ADS, Google Scholar
- Int. J. Mod. Phys. C 18, 253 (2007), DOI: 10.1142/S0129183107010425. Link, Web of Science, ADS, Google Scholar
You currently do not have access to the full text article. |
---|