World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ON THE SYSTEM SIZE OF LATTICE BOLTZMANN SIMULATIONS

    https://doi.org/10.1142/S0129183104006492Cited by:6 (Source: Crossref)

    In lattice Boltzmann simulations particle groups — represented by scalar velocity distributions — are moved on a finite lattice. The size of these particle groups is not well-defined although it is crucial to assume that they should be big enough for using a continuous distribution. Here we propose to use the liquid–vapor interface as an internal yardstick to scale the system. Comparison with existing experimental data and with molecular dynamics simulation of Lennard–Jones-argon shows that the number of atoms located on one lattice site is in the order of few atoms. This contradicts the initial assumption concerning the number of particles in the group, therefore seems to raise some doubts about the applicability of the lattice Boltzmann method in certain problems whenever interfaces play important role and ergodicity does not hold.

    References

    You currently do not have access to the full text article.

    Recommend the journal to your library today!