World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Structure of Positive Elements for C*-Algebras with Real Rank Zero

    In this paper we give a representation theorem for the Cuntz monoid S(A) of a σ-unital C*-algebra A with real rank zero and stable rank one, which allows to prove several Riesz decomposition properties on the monoid. As a consequence, it is proved that the comparability conditions (FCQ), stable (FCQ) and (FCQ+) are equivalent for simple C*-algebras with real rank zero. It is also shown that the Grothendieck group of S(A) is a Riesz group, and lattice-ordered under some additional assumptions on A.

    Partially supported by MEC-DGICYT grant no. PB95-0626, and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya.

    Dedicat al Juanje i la Neus, en ser pares.