Covering dimension of Cuntz semigroups II
Abstract
We show that the dimension of the Cuntz semigroup of a -algebra is determined by the dimensions of the Cuntz semigroups of its separable sub--algebras. This allows us to remove separability assumptions from previous results on the dimension of Cuntz semigroups.
To obtain these results, we introduce a notion of approximation for abstract Cuntz semigroups that is compatible with the approximation of a -algebra by sub--algebras. We show that many properties for Cuntz semigroups are preserved by approximation and satisfy a Löwenheim–Skolem condition.
Communicated by Yasuyuki Kawahigashi
References
- 1. R. Antoine, F. Perera, L. Robert and H. Thiel, -algebras of stable rank one and their Cuntz semigroups, Duke Math. J., in press, arXiv:1809.03984 [math.OA]. Google Scholar
- 2. , Edwards’ condition for quasitraces on -algebras, Proc. Roy. Soc. Edinburgh Sect. A 151 (2021) 525–547. Crossref, ISI, Google Scholar
- 3. , Pullbacks, -algebras, and their Cuntz semigroup, J. Funct. Anal. 260 (2011) 2844–2880. Crossref, ISI, Google Scholar
- 4. , Tensor products and regularity properties of Cuntz semigroups, Mem. Amer. Math. Soc. 251 (2018) viii+191. ISI, Google Scholar
- 5. , Abstract bivariant Cuntz semigroups, Int. Math. Res. Not. IMRN (2020) 5342–5386. Crossref, ISI, Google Scholar
- 6. , Abstract bivariant Cuntz semigroups II, Forum Math. 32 (2020) 45–62. Crossref, ISI, Google Scholar
- 7. , Cuntz semigroups of ultraproduct -algebras, J. Lond. Math. Soc. 102(2) (2020) 994–1029. Crossref, Google Scholar
- 8. ,
-theory for operator algebras. Classification of -algebras , in Aspects of Operator Algebras and Applications,Contemporary Mathematics , Vol. 534 (American Mathematical Society, 2011), pp. 1–71. Crossref, Google Scholar - 9. , Handbook of Categorical Algebra: Volume 1 Basic Category Theory,
Encyclopedia of Mathematics and its Applications , Vol. 50 (Cambridge University Press, Cambridge, 1994). Google Scholar - 10. , The Cuntz semigroup as an invariant for -algebras, J. Reine Angew. Math. 623 (2008) 161–193. Crossref, ISI, Google Scholar
- 11. , Dimension functions on simple -algebras, Math. Ann. 233 (1978) 145–153. Crossref, ISI, Google Scholar
- 12. , Model theory of -algebras, Mem. Amer. Math. Soc. 271 (2021) viii+127. Google Scholar
- 13. , Continuous Lattices and Domains,
Encyclopedia of Mathematics and its Applications , Vol. 93 (Cambridge University Press, Cambridge, 2003). Crossref, Google Scholar - 14. , Classification of inductive limits of 1-dimensional NCCW complexes, Adv. Math. 231 (2012) 2802–2836. Crossref, ISI, Google Scholar
- 15. , The cone of functionals on the Cuntz semigroup, Math. Scand. 113 (2013) 161–186. Crossref, Google Scholar
- 16. , The Jiang–Su algebra revisited, J. Reine Angew. Math. 642 (2010) 129–155. Crossref, ISI, Google Scholar
- 17. , The topological dimension of type I -algebras, in Springer Proc. Mathematics and Statistics Operator Algebra and Dynamics, Vol. 58 (Springer, Heidelberg, 2013), pp. 305–328. Crossref, Google Scholar
- 18. H. Thiel, The generator rank of subhomogeneous -algebras, preprint (2020), arXiv:2006.03624 [math.OA]. Google Scholar
- 19. , Ranks of operators in simple -algebras with stable rank one, Comm. Math. Phys. 377 (2020) 37–76. Crossref, ISI, Google Scholar
- 20. H. Thiel and E. Vilalta, Covering dimension of Cuntz semigroups, Adv. Math., in press, arXiv:2101.04522 [math.OA]. Google Scholar
- 21. , On the classification problem for nuclear -algebras, Ann. Math. 167(2) (2008) 1029–1044. Crossref, Google Scholar