Genus one Belyi maps by quadratic correspondences
Abstract
We present a method of obtaining a Belyi map on an elliptic curve from that on the Riemann sphere. This is done by writing the former as a radical of the latter, which we call a quadratic correspondence, with the radical determining the elliptic curve. With a host of examples of various degrees, we demonstrate that the correspondence is an efficient way of obtaining genus one Belyi maps. As applications, we find the Belyi maps for the dessins d’enfant which have arisen as brane-tilings in the physics community, including ones, such as the so-called suspended pinched point, which have been a standing challenge for a number of years.
References
- 1. N. M. Adrianov, N. Y. Amburg, V. A. Dremov, Y. A. Levitskaya, E. M. Kreines, Y. Y. Kochetkov, V. F. Nasretdinova and G. B. Shabat, Catalog of dessins dEnfants with edges, arXiv:0710.2658v1 [math.AG]. Google Scholar
- 2. , Children’s drawings from Seiberg–Witten curves, Commun. Numer. Theor. Phys. 1 (2007) 237. https://doi.org/10.4310/CNTP.2007.v1.n2.a1 [hep-th/0611082]. Crossref, Web of Science, Google Scholar
- 3. G. Belyǐ, (Trans. N. Koblitz), Galois extensions of a maximal cyclotomic field, Math. USSR Izv. 14(2) (1980) 247–256. Google Scholar
- 4. , From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math. Soc. (3) 90 (2005) 167–208. Crossref, Web of Science, Google Scholar
- 5. , The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006) 183–214. Web of Science, Google Scholar
- 6. P. Clarkson, Painlevé Transcendentals, Chapter 32 of the NIST Digital Library of Mathematical Functions (2016). Website
http://dlmf.nist.gov . Google Scholar - 7. , On the Classification of Brane Tilings, J. High Energy Phys. 1001 (2010) 078. https://doi.org/10.1007/JHEP01(2010)078, arXiv:0909.2868 [hep-th]. Crossref, Web of Science, Google Scholar
- 8. , D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165. https://doi.org/10.1016/S0550-3213(00)00699-4 [hep-th/0003085]. Crossref, Web of Science, Google Scholar
- 9. , Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12(3) (2008) 489. https://doi.org/10.4310/ATMP.2008.v12.n3.a2 [hep-th/0511287]. Crossref, Web of Science, Google Scholar
- 10. , Brane dimers and quiver gauge theories, J. High Energy Phys. 0601 (2006) 096. https://doi.org/10.1088/1126-6708/2006/01/096 [hep-th/0504110]. Crossref, Web of Science, Google Scholar
- 11. , Gauge theories from toric geometry and brane tilings, J. High Energy Phys. 0601 (2006) 128. https://doi.org/10.1088/1126-6708/2006/01/128 [hep-th/0505211]. Crossref, Google Scholar
- 12. S. Franco, Y. H. He, C. Sun and Y. Xiao, A comprehensive survey of Brane tilings. arXiv:1702.03958 [hep-th]. Google Scholar
- 13. M. Gabella, P. Longhi, C. Y. Park and M. Yamazaki, BPS graphs: From spectral networks to BPS quivers. arXiv:1704.04204 [hep-th]. Google Scholar
- 14. , Introduction to Compact Riemann Surfaces and Dessins d’enfants
LMS Student Texts , Vol. 79 (CUP, 2012). Google Scholar - 15. Y. H. He, Calabi–Yau varieties: From quiver representations to Dessins d’Enfants. arXiv:1611.09398 [math.AG]. Google Scholar
- 16. , The beta ansatz: A tale of two complex structures, J. High Energy Phys. 1106, 056 (2011) https://doi.org/10.1007/JHEP06(2011)056 [arXiv:1104.5490 [hep-th]]. Crossref, Web of Science, Google Scholar
- 17. A. Hanany and K. D. Kennaway, Dimer models and toric diagrams, hep-th/0503149. Google Scholar
- 18. , Dessins denfants in generalised quiver theories, J. High Energy Phys. 1508 (2015) 085, arXiv:1503.06418 [hep-th]. Crossref, Google Scholar
- 19. , Belyi functions for hyperbolic hypergeometric-to-Heun transformations, J. Algebra 441 (2015) 609–659, arXiv:1212.3803 [math.AG]. Crossref, Web of Science, Google Scholar
- 20. M. van Hoeij and R. Vidunas, Algorithms and differential relations for Belyi functions, arXiv:1305.7218. Google Scholar
- 21. , Monodromy preserving deformation of linear ordinary differential equations with rational coefficients II, Physica 2D (1981) 407–448. Google Scholar
- 22. G. A. Jones, Regular dessins with a given automorphism group, arXiv:1309.5219 [math.GR]. Google Scholar
- 23. , Dessins d’Enfants on Riemann Surfaces (Springer, 2016). Crossref, Google Scholar
- 24. , Toric CFTs, Permutation Triples and Belyi Pairs, J. High Energy Phys. 1103 (2011) 065. https://doi.org/10.1007/JHEP03(2011)065, arXiv:1012.2351 [hep-th]. Crossref, Web of Science, Google Scholar
- 25. , Grothendieck’s dessins d’enfants, their deformations and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations, Algebra Anal. 17 (2005) 224–273. Google Scholar
- 26. M. Klug, M. Musty, S. Schiavone and J. Voight, Numerical calculation of three-point branched covers of the projective line, arXiv:1311.2081 [math.NT]. Google Scholar
- 27. , Graphs on Surfaces and Their Applications (Springer, 2004). Crossref, Google Scholar
- 28. , Algebraic solutions of the sixth Painlevé equation, J. Geom. Phys. 85 (2014). Crossref, Web of Science, Google Scholar
- 29. , Studies on the Painlevé Equations. I. Sixth Painlevé equation , Ann. Mat. Pura Appl. 146 (1987) 337–381. Crossref, Web of Science, Google Scholar
- 30. , The Grothendieck Theory of Dessins d’Enfants,
LMS Lecture Note Series (CUP, 1994). Crossref, Google Scholar - 31. J. Sijsling and J. Voight, On computing Belyi maps, arXiv:1311.2529 [math.NT]. Google Scholar
- 32. , PHCpack: A general-purpose solver for polynomial systems by homotopy continuation, ACM Trans. Math. Softw. 25(2) (1999) 251–276, http://www.math.uic.edu/jan/PHCpack/phcpack.html. Crossref, Web of Science, Google Scholar
- 33. , A classification of coverings yielding Heun-to-hypergeometric reductions, Osaka J. Math. 51 (2014) 867–903, arXiv:1204.2730. Web of Science, Google Scholar
- 34. , Composite genus one Belyi maps, Indagat. Math. 29 (2018) 916–947, arXiv:1610.08075 [math.AG]. Crossref, Web of Science, Google Scholar
- 35. , Computation of highly ramified coverings, Math. Comput. 78 (2009) 2371–2395, arXiv:0705.3134. Crossref, Web of Science, Google Scholar
- 36. , Quadratic transformations of the sixth Painlevé equation, Math. Nachr. 280 (2007) 1834–1855. Crossref, Web of Science, Google Scholar