Classifying module categories for generalized Temperley–Lieb–Jones ∗-2-categories
Abstract
Generalized Temperley–Lieb–Jones (TLJ) 2-categories associated to weighted bidirected graphs were introduced in unpublished work of Morrison and Walker. We introduce unitary modules for these generalized TLJ 2-categories as strong ∗-pseudofunctors into the ∗-2-category of row-finite separable bigraded Hilbert spaces. We classify these modules up to ∗-equivalence in terms of weighted bi-directed fair and balanced graphs in the spirit of Yamagami’s classification of fiber functors on TLJ categories and DeCommer and Yamashita’s classification of unitary modules for .
References
- 1. , Complete theories in 2-categories, Cahiers Topol. Géom. Diff. Catégor. 29(1) (1988) 9–57, http://www.numdam.org/item/CTGDC_1988__29_1_9_0/. Google Scholar
- 2. D. Coles, P. Huston, D. Penneys and S. Srinivas, The module embedding theorem via towers of algebras, 2018, http://arxiv.org/abs/1810.07049. Google Scholar
- 3. , Tannaka-Krein duality for compact quantum homogeneous spaces. II. Classification of quantum homogeneous spaces for quantum SU(2), J. Reine Ange. Math. (Crelles J.) 2015(708) (2013) 143–171. https://doi.org/10.1515/crelle-2013-0074 arXiv:1212.3413v2. Crossref, Google Scholar
- 4. , Tannaka-Krein duality for compact quantum homo-geneous spaces. I. General theory, Theory Appl. Categor. 28(31) (2013) 1099–1138, arXiv:1211.6552v3. Google Scholar
- 5. , Tensor Categories,
Mathematical Surveys and Monographs , Vol. 205 (American Mathematical Society, Providence, RI, 2015), ISBN:9781470420246. Crossref, Google Scholar - 6. , Module categories over representations of and graphs, Math. Res. Lett. 11(1) (2004) 103–114. https://doi.org/10.4310/MRL.2004.v11.n1.a10 arXiv:math/0302130v1. Crossref, Web of Science, Google Scholar
- 7. , State models and the Jones polynomial, Topology 26(3) (1987) 395–407. https://doi.org/10.1016/0040-9383(87)90009-7 Crossref, Web of Science, Google Scholar
- 8. M. Hartglass and B. Nelson, Non-tracial free graph von Neumann algebras, 2018, arXiv:1810.01922v2. Google Scholar
- 9. , Categorified trace for module tensor categories over braided tensor categories, Doc. Math. 21 (2016) 1089–1149, arXiv:1509.02937. Crossref, Web of Science, Google Scholar
- 10. , Index for subfactors, Invent. Math. 72(1) (1983) 1–25. https://doi.org/10.1007/BF01389127 Crossref, Web of Science, Google Scholar
- 11. , A polynomial invariant for knots via Von Neumann algebras, Bull. Amer. Math. Soc. 12(1) (1985) 103–111. https://doi.org/10.1090/S0273-0979-1985-15304-2 Crossref, Web of Science, Google Scholar
- 12. , Operator algebras in rigid C*-tensor categories, Commun. Math. Phys. 355(3) (2017) 1121–1188. https://doi.org/10.1007/s00220-017-2964-0 arXiv:1611.04620. Crossref, Web of Science, Google Scholar
- 13. T. Leinster, Basic bicategories, 1998, arXiv:math/9810017v1. Google Scholar
- 14. S. Morrison and K. Walker, The graph planar algebra embedding, 2010, http://tqft.net/gpa. Google Scholar
- 15. NLab, Modifications, 2018, https://ncatlab.org/nlab/show/modification. Google Scholar
- 16. NLab, Pseudofunctor, 2018, https://ncatlab.org/nlab/show/pseudofunctor. Google Scholar
- 17. NLab, Pseudonatural transformation, 2018, https://ncatlab.org/nlab/show/pseudonatural +transformation. Google Scholar
- 18. , Ribbon graphs and their invariants derived from quantum groups, Commun. Math. Phys. 127(1) (1990) 1–26. https://doi.org/10.1007/BF02096491 Crossref, Web of Science, Google Scholar
- 19. , Relations between the ‘Percolation’ and ‘Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the ‘Percolation’ problem, Proc. Royal Soc. A: Math. Phys. Eng. Sci. 322(1549) (1971) 251–280. https://doi.org/10.1098/rspa.1971.0067 Google Scholar
- 20. S. Yamagami, Fiber functors on Temperley-Lieb categories, 2004, arXiv:math/0405517v2. Google Scholar