World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Free oriented extensions of subfactor planar algebras by:1 (Source: Crossref)

    We show that the restriction functor from oriented factor planar algebras to subfactor planar algebras admits a left adjoint, which we call the free oriented extension functor. We show that for any subfactor planar algebra realized as the standard invariant of a hyperfinite II1 subfactor, the projection category of the free oriented extension admits a realization as bimodules of the hyperfinite II1 factor.

    AMSC: 46L37, 46M15


    • 1. N. Afzaly, S. Morrison, D. Penneys, The classification of subfactors with index at most 5+1/4, to appear in Mem. Amer. Math. Soc. Google Scholar
    • 2. T. Banica , Theorie des representations du groupe quantique compact libre O(n), C. R. Acad. Sci. Paris Ser. I Math. 322 (1996) 241–244. Google Scholar
    • 3. T. Banica , Le groupe quantique compact libre U(n), Comm. Math. Phys. 190(1) (1997) 143–172. ISIGoogle Scholar
    • 4. A. Brothier, M. Hartglass, D. Penneys , Rigid C-tensor categories of bimodules over interpolated free group factors, J. Math. Phys. 53 (2012) 123525. ISIGoogle Scholar
    • 5. D. Bisc and V. F. R. Jones , Singly generated planar algebras of small dimension, Duke Math. J. 101(1) (2000) 41–75, ISIGoogle Scholar
    • 6. S. Bigelow, E. Peters, S. Morrison and N. Snyder , Constructing the extended Haagerup planar algebra, Acta Math. 209(1) (2012) 29–82, ISIGoogle Scholar
    • 7. J. Bichon, A. D. Rijdt and S. Vaes , Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262(3) (2006) 703–728. ISIGoogle Scholar
    • 8. P. Das, S. Ghosh and V. P. Gupta , Perturbations of planar algebras, Math. Scand. 114(1) (2014) 38–85. Google Scholar
    • 9. P. Etingof, D. Nikshych and V. Ostrik , Fusion categories and homotopy theory, Quantum Topol. 1(3) (2010) 209–273. Google Scholar
    • 10. S. K. Ghosh , Planar algebras: A category theoretic point of view, J. Algebra 339(1) (2011) 27–54. ISIGoogle Scholar
    • 11. P. Ghez, R. Lima and J. E. Roberts , W*-categories, Pacific J. Math. 120(1) (1985) 79–109. ISIGoogle Scholar
    • 12. S. K. Ghosh, C. Jones and B. M. Reddy, Annular representations of free product categories, to appear in J. Non-commutative Geom., arXiv:1803.06817 (2018). Google Scholar
    • 13. V. F. R. Jones, Planar algebras I, arxiv:math/9909027v1, (1999). Google Scholar
    • 14. V. F. R. Jones, Planar algebra course notes, 2011. VANDERBILT/index.html. Google Scholar
    • 15. V. F. R. Jones, S. Morrison and N. Snyder , The classification of subfactors of index at most 5, Bull. Am. Math. Soc. 51(2) (2014) 277–327. ISIGoogle Scholar
    • 16. C. Jones and D. Penneys , Operator algebras in rigid C-tensor categories, Comm. Math. Phys. 355(3) (2017) 1121–1188. ISIGoogle Scholar
    • 17. V. F. R. Jones and V. S. Sunder , Introduction to Subfactors, London Mathematical Society Lecture Note Series Vol. 234 (Cambridge University Press, 1997). Google Scholar
    • 18. S. Mac Lane , Categories for the working mathematician, Graduate Texts in Mathematics, Vol. 5 (Springer-Verlag, New York, 1998). Google Scholar
    • 19. M. Burns , Subfactors, Planar algebras and rotations, Proceedings of the 2014 Maui and 2015 Qinhuangdao Conferences in Honour of Vaughan F.R. Jones’ 60th Birthday, 2015. Google Scholar
    • 20. S. Morrison, E. Peters and N. Snyder , Categories generated by a trivalent vertex, Selecta Math. 23(2) (2017) 817–868. ISIGoogle Scholar
    • 21. A. Ocneanu , Quantized groups, string algebras and Galois theory for algebras, in Operator Algebras and Applications, London Mathematical Society Lecture Note Series, Vol. 136 (Cambridge University Press, 1988), pp. 119–172. Google Scholar
    • 22. D. Penneys, Unitary dual functors for unitary multitensor categories, arXiv:1808.00323 (2018). Google Scholar
    • 23. S. Popa , An axiomatization of the lattice of higher relatove commutants, Invent. Math. 120 (1995) 237–252. ISIGoogle Scholar
    • 24. S. Vaes , Factors of type II1 without non-trivial finite index subfactors, Trans. Amer. Math. Soc. 361 (2008) 2587–2606. ISIGoogle Scholar