The little desert? Some subfactors with index in the interval 
Abstract
Progress on classifying small index subfactors has revealed an almost empty landscape. In this paper we give some evidence that this desert continues up to index . There are two known quantum-group subfactors with index in this interval, and we show that these subfactors are the only way to realize the corresponding principal graphs. One of these subfactors is 1-supertransitive, and we demonstrate that it is the only 1-supertransitive subfactor with index between 5 and
. Computer evidence shows that any other subfactor in this interval would need to have rank at least 38. We prove our uniqueness results by showing that there is a unique flat connection on each graph. The result on 1-supertransitive subfactors is proved by an argument using intermediate subfactors, running the "odometer" from the FusionAtlas' Mathematica package and paying careful attention to dimensions. This is the published version of arXiv:1205.2742.
References
- Commun. Math. Phys. 202(1), 1 (1999), arXiv:math. OA/9803044 DOI: 10.1007/s002200050574. Crossref, ISI, Google Scholar
- Acta Math. 209(1), 29 (2012), arXiv:0909.4099 DOI: 10.1007/s11511-012-0081-7. Crossref, ISI, Google Scholar
J. Bion-Nadal , An example of a subfactor of the hyperfinite II 1 factor whose principal graph invariant is the Coxeter graph E6, Current Topics in Operator Algebras (World Scientific Publishing, River Edge, NJ, 1991) pp. 104–113. Google Scholar- Pacific J. Math. 163(2), 201 (1994). Crossref, ISI, Google Scholar
- Math. Ann. 311(2), 223 (1998), DOI: 10.1007/s002080050185. Crossref, ISI, Google Scholar
- Int. J. Math. 18(3), 255 (2007), arXiv:math.OA/0604460 DOI: 10.1142/S0129167X07004011. Link, ISI, Google Scholar
- Comm. Math. Phys. 303(3), 845 (2011), arXiv:1004.0665 DOI: 10.1007/s00220-010-1136-2. Crossref, ISI, Google Scholar
- Comm. Math. Phys. 165(3), 445 (1994), euclid.cmp/1104271410. Crossref, ISI, Google Scholar
-
D. E. Evans and Y. Kawahigashi , Quantum Symmetries on Operator Algebras ,Oxford Mathematical Monographs ( Oxford University Press , New York , 1998 ) . Google Scholar -
F. M. Goodman , P. de la Harpe and V. F. R. Jones , Coxeter Graphs and Towers of Algebras, Mathematical Sciences Research Institute Publications 14 ( Springer-Verlag , New York , 1989 ) . Crossref, Google Scholar - Comm. Math. Phys. 311(3), 617 (2012), arXiv:11doil02.2631 DOI: 10.1007/s00220-012-1427-x. Crossref, ISI, Google Scholar
- U. Haagerup, Principal graphs of subfactors in the index range 4 < [M: N] < 3+p2, in Subfactors, Kyuzeso, 1993 (World Scientific Publishing, River Edge, NJ, 1994), pp. 1–38; MR1317352 . Google Scholar
- R. Han, A construction of the "2221" planar algebra, Ph.D. thesis, University of California, Riverside (2010) , arXiv:1102.2052 . Google Scholar
- Publ. Res. Inst. Math. Sci. 27(6), 953 (1991), DOI: 10.2977/prims/1195169007. Crossref, ISI, Google Scholar
- Pacific J. Math. 166(2), 305 (1994), euclid.pjm/1102621140. Crossref, ISI, Google Scholar
- Rev. Math. Phys. 13(5), 603 (2001), DOI: 10.1142/S0129055X01000818. Link, ISI, Google Scholar
- Comm. Math. Phys. 316(2), 531 (2012), arXiv:1109. 3190 DOI: 10.1007/s00220-012-1472-5. Crossref, ISI, Google Scholar
- J. Funct. Anal. 112(2), 257 (1993), DOI: 10.1006/jfan.1993.1033. Crossref, ISI, Google Scholar
- V. F. R. Jones, Planar algebras, I, preprint (1999) , arXiv:math.QA/9909027 . Google Scholar
V. F. R. Jones , The planar algebra of a bipartite graph, Knots in Hellas '9824,Series on Knots and Everything (World Scientific Publications, River Edge, NJ, Delphi, 2000) pp. 94–117. Google Scholar- J. Funct. Anal. 127(1), 63 (1995), DOI: 10.1006/jfan.1995.1003. Crossref, ISI, Google Scholar
- S. Morrison and D. Penneys, Constructing spoke subfactors using the jellyfish algorithm, to appear in Trans. Amer. Math. Soc . Google Scholar
- Int. J. Math. 23(3), 1250016 (2012), arXiv:1007.2240 DOI: 10.1142/S0129167X11007586. Link, ISI, Google Scholar
- Quantum Topol. 2(2), 101 (2011), arXiv:1003.0022 DOI: 10.4171/QT/16. Crossref, Google Scholar
- Trans. Amer. Math. Soc. 364(9), 4713 (2012), arXiv:1002.0168 DOI: 10.1090/S0002-9947-2012-05498-5. Crossref, ISI, Google Scholar
- Comm. Math. Phys. 312(1), 1 (2012), arXiv:1007.1730 DOI: 10.1007/s00220-012-1426-y. Crossref, ISI, Google Scholar
- S. Morrison and K. Walker, Planar algebras, connections, and Turaev–Viro theory, preprint; http://tqft.net/tvc . Google Scholar
A. Ocneanu , Operator Algebras and Applications,London Mathematical Society Lecture Note Series 2 (Cambridge University Press, Cambridge, 1988) pp. 119–172. Google Scholar- Int. J. Math. 23(3), 1250017 (2012), arXiv:1010.3797 DOI: 10.1142/S0129167X11007641. Link, ISI, Google Scholar
- Int. J. Math. 21(8), 987 (2010), arXiv:0902.1294 DOI: 10.1142/S0129167X10006380. Link, ISI, Google Scholar
- C. R. Acad. Sci. Paris Sér. I Math. 309(12), 771 (1989). Google Scholar
- Acta Math. 172(2), 163 (1994), DOI: 10.1007/BF02392646. Crossref, ISI, Google Scholar
- Math. Z. 250(4), 745 (2005), arXiv:math/0403217 DOI: 10.1007/s00209-005-0773-1. Crossref, ISI, Google Scholar
- J. Pure Appl. Algebra 212(8), 1878 (2008), arXiv:math/0710.1621 DOI: MR2414692. Crossref, ISI, Google Scholar
- Invent. Math. 92(2), 349 (1988). Crossref, ISI, Google Scholar
- Commun. Math. Phys. 133(2), 383 (1990). Crossref, ISI, Google Scholar
- J. Amer. Math. Soc. 11(2), 261 (1998), DOI: 10.1090/S0894-0347-98-00253-7. Crossref, ISI, Google Scholar