World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

RIGIDITY OF HOLOMORPHIC MAPS BETWEEN FIBER SPACES

    https://doi.org/10.1142/S0129167X14500062Cited by:4 (Source: Crossref)

    In the study of holomorphic maps, the term "rigidity" refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f : Y → X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X1 × X2 and Y = Y1 × Y2 of compact connected complex manifolds. When X1 is a Riemann surface of genus ≥ 2, we show that any non-constant holomorphic map F : Y → X is of a special form.

    AMSC: 32L05, 53C24, 55R05

    References