SUBFACTORS OF INDEX LESS THAN 5, PART 2: TRIPLE POINTS
Abstract
We summarize the known obstructions to subfactors with principal graphs which begin with a triple point. One is based on Jones's quadratic tangles techniques, although we apply it in a novel way. The other two are based on connections techniques; one due to Ocneanu, and the other previously unpublished, although likely known to Haagerup.
We then apply these obstructions to the classification of subfactors with index below 5. In particular, we eliminate three of the five families of possible principal graphs called "weeds" in the classification from S. Morrison and N. Snyder, Subfactors of index less than 5, part 1: the principal graph odometer, to appear in Comm. Math. Phys.
This paper is available online at arXiv: 1007.2240, and at http://tqft.net/web/publications.
References
- Comm. Math. Phys. 202(1), 1 (1999), arXiv: math.OA/9803044 DOI: 10.1007/s002200050574. Crossref, ISI, Google Scholar
- Comm. Math. Phys. 286(3), 1141 (2009), arXiv: 0711.4144 DOI: 10.1007/s00220-008-0588-0. Crossref, ISI, Google Scholar
- S. Bigelow, S. Morrison, E. Peters and N. Snyder, Constructing the extended Haagerup planar algebra, preprint (2009), to appear in Acta Math , arXiv: 0909.4099 . Google Scholar
- Math. Ann. 311(2), 223 (1998), DOI: http://dx.doi.org/10.1007/s002080050185. Crossref, ISI, Google Scholar
- Invent. Math. 128(1), 89 (1997). ISI, Google Scholar
- Comm. Math. Phys. 303(3), 845 (2011), arXiv: 1004.0665 DOI: 10.1007/s00220-010-1136-2. Crossref, ISI, Google Scholar
-
D. E. Evans and Y. Kawahigashi , Quantum Symmetries on Operator Algebras ,Oxford Mathematical Monographs ( The Clarendon Press Oxford University Press , New York , 1998 ) . Google Scholar -
F. M. Goodman , P. de la Harpe and V. F. R. Jones , Coxeter Graphs and Towers of Algebras ,Mathematical Sciences Research Institute Publications 14 ( Springer-Verlag , New York , 1989 ) . Crossref, Google Scholar - Enseign. Math. (2) 44(4), 173 (1998). ISI, Google Scholar
U. Haagerup , Subfactors (Kyuzeso, 1993) (World Scientific Publication, River Edge, NJ, 1994) pp. 1–38. Google Scholar- Rev. Math. Phys. 13(5), 603 (2001), DOI: 10.1142/S0129055X01000818. Link, ISI, Google Scholar
- Invent. Math. 72(1), 1 (1983), DOI: 10.1007/BF01389127. Crossref, ISI, Google Scholar
V. F. R. Jones , Essays on Geometry and Related Topics, Vol. 1, 2,Monographies dé Enseignement Mathematique 38 (Enseignement Mathematique, Geneva, 2001) pp. 401–463. Google Scholar- V. F. R. Jones, Quadratic tangles in planar algebras, to appear in Duke Math. J , arXiv: 1007.1158 . Google Scholar
- Bull. London Math. Soc. 21(3), 209 (1989), DOI: 10.1112/blms/21.3.209. Crossref, ISI, Google Scholar
- S. Morrison and N. Snyder, Subfactors of index less than 5, part 1: The principal graph odometer, to appear in Comm. Math. Phys , arXiv: 1007.1730 . Google Scholar
- S. Morrison and K. Walker, The graph planar algebra embedding theorem, preprint, http://tqft.net/gpa . Google Scholar
A. Ocneanu , Operator Algebras and Applications, Vol. 2,London Mathematical Society Lecture Note Series 136 (Cambridge University Press, Cambridge, 1988) pp. 119–172. Google Scholar- Internat. J. Math. 23(3), (2012), arXiv: 1010.3797. Google Scholar
- Internat. J. Math. 21(8), 987 (2010), arXiv: 0902.1294 DOI: 10.1142/S0129167X10006380. Link, ISI, Google Scholar
- Invent. Math. 111(2), 375 (1993), DOI: 10.1007/BF01231293. Crossref, ISI, Google Scholar
- Acta Math. 172(2), 163 (1994), DOI: 10.1007/BF02392646. Crossref, ISI, Google Scholar
- Invent. Math. 120(3), 427 (1995), DOI: 10.1007/BF01241137. Crossref, ISI, Google Scholar