World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

MATRIX AIRY FUNCTIONS FOR COMPACT LIE GROUPS

    The classical Airy function has been generalized by Kontsevich to a function of a matrix argument, which is an integral over the space of skew-hermitian matrices of a unitary-invariant exponential kernel. In this paper, the Kontsevich integral is further generalized to integrals over the Lie algebra of an arbitrary connected compact Lie group, using exponential kernels invariant under the group. The (real) polynomial defining this kernel is said to have the Airy property if the integral defines a function of moderate growth. A very general sufficient criterion for a polynomial to have the Airy property is given. It is shown that an invariant polynomial on the Lie algebra has the Airy property if its restriction to a Cartan subalgebra has the Airy property. This result is used to evaluate these invariant integrals completely and explicitly on the hermitian matrices, obtaining formulae that contain those of Kontsevich as special cases.

    AMSC: 2E99, 33E20

    References