World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Feb 12th

During this period, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

SIMPLE GRADED RINGS OF SIEGEL MODULAR FORMS, DIFFERENTIAL OPERATORS AND BORCHERDS PRODUCTS

    In this paper, we show that the graded ring of Siegel modular forms of Γ0(N) ⊂ Sp(2,ℤ) has a very simple unified structure for N = 1, 2, 3, 4, taking Neben-type case (the case with character) for N = 3 and 4. All are generated by 5 generators, and all the fifth generators are obtained by using the other four by means of differential operators, and it is also obtained as Borcherds products. As an appendix, examples of Euler factors of L-functions of Siegel modular forms of Sp(2,ℤ) of odd weight are given.

    AMSC: Primary 11F46, Secondary 11F60, Secondary 11F50

    References

    • A. N. Andrianov, Euler products corresponding to Siegel modular forms of genus 2, Russian Math. Surv. 29(3) (1974) 45–116; Uuspekhi Math. Nauk 29(3) (1974) 43–110 . Google Scholar
    • A. N.   Andrianov , Quadratic Forms and Hecke Operators ( Springer-Verlag , Berlin, Heidelberg, New York, London, Paris, Tokyo , 1987 ) . CrossrefGoogle Scholar
    • R. E. Borcherds, Invent. Math. 120(1), 161 (1995). Crossref, ISIGoogle Scholar
    • J.   Bruinier , Borcherds Products on O(2, l) and Chern Classes of Heegner Divisors , Lecture Notes in Mathematics   1780 ( Springer-Verlag , Berlin , 2002 ) . CrossrefGoogle Scholar
    • Y. J. Choie and W. Eholzer, J. Number Theory 68(2), 160 (1998). Crossref, ISIGoogle Scholar
    • M.   Eichler and D.   Zagier , The Theory of Jacobi Forms ( Birkhäuser, Boston, Basel, Stittgart , 1985 ) . CrossrefGoogle Scholar
    • W. Eholzer and T. Ibukiyama, Int. J. Math. 9(4), 443 (1998). Link, ISIGoogle Scholar
    • E. Freitag and R. Salvati Manni, Manuskripte Forschergruppe Arith. Mannheim–Heidelberg 6, 1 (2002). Google Scholar
    • V. A. Gritsenko and V. V. Nikulin, Int. J. Math. 9(2), 201 (1998). Link, ISIGoogle Scholar
    • K. Gunji, J. Math. Soc. Japan 56(2), 375 (2004). Crossref, ISIGoogle Scholar
    • S. Hayashida and T. Ibukiyama, Siegel modular forms of half integral weights and a lifting conjecture, preprint . Google Scholar
    • T. Ibukiyama, Int. J. Math. 2(1), 17 (1991). LinkGoogle Scholar
    • T. Ibukiyama, Commun. Math. Univ. St. Pauli 48, 103 (1999). ISIGoogle Scholar
    • T. Ibukiyama, Vector valued Siegel modular forms of symmetric tensor representation of degree two, preprint (2000) . Google Scholar
    • T. Ibukiyama, Vector valued Siegel modular forms of Sym(4) and Sym(6), preprint (2001) . Google Scholar
    • T. Ibukiyama, Vector valued Siegel modular forms of half integral weight, preprint (2004) . Google Scholar
    • J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962) 175–200; II, ibid. 86 (1964) 392–412 . Google Scholar
    • J. Igusa, Amer. J. Math. 89, 817 (1967). Crossref, ISIGoogle Scholar

    Remember to check out the Most Cited Articles in IJM !

    Check out our NEW Mathematics books for inspirations & up-to-date information in your research area!