Device Simulation Demands of Upcoming Microelectronics Devices
Abstract
An overview of models for the simulation of current transport in micro- and nanoelectronic devices within the framework of TCAD applications is presented. Starting from macroscopic transport models, currently discussed enhancements are specifically addressed. This comprises the inclusion of higher-order moments into the transport models, the incorporation of quantum correction and tunneling models up to dedicated quantum-mechanical simulators, and mixed approaches which are able to account for both, quantum interference and scattering. Specific TCAD requirements are discussed from an engineer's perspective and an outlook on future research directions is given.
References
- "International technology roadmap for semiconductors - 2004 update," (2004), http://public.itrs.net . Google Scholar
- Solid-State Electronics 48(4), 497 (2004). Web of Science, Google Scholar
-
S. Selberherr , Analysis and Simulation of Semiconductor Devices ( Springer Wien , 1984 ) . Google Scholar - International Journal of High Speed Electronics and Systems 13(3), 873 (2003). Link, Google Scholar
- IEEE Transactions on Electron Devices ED-17(1), 38 (1970). Web of Science, Google Scholar
- Physical Review 126(6), (1962). Google Scholar
- Journal of Applied Physics 92(10), 6019 (2002). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 49(10), 1814 (2002). Web of Science, Google Scholar
- Journal of Applied Physics 90(5), 2389 (2001). Web of Science, Google Scholar
T. Grasser , Advanced transport models for sub-micrometer devices, Proceedings International Conference on Simulation of Semiconductor Processes and Devices (2004) pp. 1–8. Google Scholar- Journal of Applied Physics 80(9), 5444 (1996). Web of Science, Google Scholar
- Physical Review B 38(14), 9721 (1988). Web of Science, Google Scholar
-
R. Hockney and J. W. Eastwood , Computer Simulation Using Particles ( Adam Hilger , Bristol and Philadelphia , 1988 ) . Google Scholar - Computer Methods in Applied Mechanics and Engineering 30, 173 (1982). Web of Science, Google Scholar
- Semiconductors and Semimetals 14, 249 (1979). Google Scholar
- Reviews of Modern Physics 55(3), 645 (1983). Web of Science, Google Scholar
- Solid-State Electronics 31(3/4), 523 (1988). Web of Science, Google Scholar
- Solid-State Electronics 32(10), 893 (1989). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 47(10), 1898 (2000). Web of Science, Google Scholar
H. Kosina , Large-Scale Scientific Computing,Lecture Notes in Computer Science 2907 (2003) pp. 170–177. Google ScholarC. Jacoboni , A new approach to Monte Carlo simulation, International Electron Devices Meeting (1989) pp. 469–472. Google Scholar- Solid-State Electronics 32(12), 1417 (1989). Web of Science, Google Scholar
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 7(2), 259 (1988). Web of Science, Google Scholar
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 8(4), 360 (1989). Web of Science, Google Scholar
- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 13(2), 201 (1994). Web of Science, Google Scholar
- Applied Physics Letters 30(10), 528 (1977). Web of Science, Google Scholar
- Journal of Applied Physics 58(2), 857 (1985). Web of Science, Google Scholar
S. Laux and M. Fischetti , Monte Carlo Device Simulation: Full Band and Beyond (Kluwer, Boston, Dordrecht, London, 1991) pp. 1–26. Google Scholar- Semiconductor Science and Technology 11, 380 (1996). Web of Science, Google Scholar
C. Jungemann , Phase space multiple refresh: A versatile statistical enhancement method for Monte Carlo device simulation, Proceedings International Conference on Simulation of Semiconductor Processes and Devices (1996) pp. 65–66. Google Scholar- IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 17(12), 1230 (1998). Web of Science, Google Scholar
- Mathematics and Computers in Simulation 62(3-6), 367 (2003). Web of Science, Google Scholar
- Journal of Applied Physics 93(6), 3564 (2003). Web of Science, Google Scholar
T. Kurosawa , Monte Carlo calculation of hot electron problems, Proceedings of the International Conference on the Physics of Semiconductors (1966) pp. 424–426. Google Scholar-
C. Jacoboni and P. Lugli , The Monte Carlo Method for Semiconductor Device Simulation ( Springer Wien , New York , 1989 ) . Google Scholar - Journal of Physics and Chemistry of Solids 31, 1963 (1970). Web of Science, Google Scholar
- Journal of Physics C: Solid State Physics 4, 1801 (1971). Web of Science, Google Scholar
- Physical Review B 12(4), 2265 (1975). Web of Science, Google Scholar
- Journal of Physics and Chemistry of Solids 36, 1129 (1975). Web of Science, Google Scholar
- Physical Review B 23(8), 4197 (1981). Web of Science, Google Scholar
- Journal of Applied Physics 75(1), 297 (1994). Web of Science, Google Scholar
- Semiconductor Science and Technology 7(3B), 357 (1992). Web of Science, Google Scholar
M. Fischetti and S. Laux , Monte Carlo simulation of electron transport in Si: The first 20 years, 26th European Solid State Device Research Conference (1996) pp. 813–820. Google Scholar- Journal of Applied Physics 92(12), 7320 (2002). Web of Science, Google Scholar
- Journal of Applied Physics 94(2), 1079 (2003). Web of Science, Google Scholar
- IEEE Electron Device Letters 25(4), 191 (2004). Web of Science, Google Scholar
- Journal of Applied Physics 80(4), 2234 (1996). Web of Science, Google Scholar
- Physical Review B 48(19), 14276 (1993). Web of Science, Google Scholar
- Applied Physics Letters 63(2), 186 (1993). Web of Science, Google Scholar
- Journal of Applied Physics 70(3), 1483 (1991). Web of Science, Google Scholar
- Applied Physics Letters 70, 2144 (1997). Web of Science, Google Scholar
-
B. Fischer , A Full-Band Monte Carlo Charge Transport Model for Nanoscale Silicon Devices Including Strain ( Shaker Verlag , 2000 ) . Google Scholar - Solid-State Electronics 48(9), 1325 (2004). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 48(9), 1878 (2001). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 44(2), 297 (1997). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 44(4), 584 (1997). Web of Science, Google Scholar
- Solid-State Electronics 47, 1589 (2003). Web of Science, Google Scholar
- Solid-State Electronics 32(10), 839 (1989). Web of Science, Google Scholar
- Solid-State Electronics 37(3), 411 (1994). Web of Science, Google Scholar
C. Jungemann , Improved modified local density approximation for modeling of size quantization in NMOSFETs, Proceedings International Conference on Modeling and Simulation of Microsystems (2001) pp. 458–461. Google Scholar- IEEE Transactions on Nanotechnology 1(4), 238 (2002). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 50(12), 2564 (2003). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 50(2), 440 (2003). Web of Science, Google Scholar
- Applied Physics Letters 22(11), 562 (1973). Web of Science, Google Scholar
- A. Gehring, Simulation of l%nneling in Semiconductor Devices, Dissertation, Technische Universität Wien (2003) . Google Scholar
- Journal of Applied Physics 67(10), 6353 (1990). Web of Science, Google Scholar
- Superlattices and Microstructures 11(3), 347 (1992). Web of Science, Google Scholar
- Journal of Applied Physics 81, 7845 (1997). Web of Science, Google Scholar
- Journal of Computational Electronics 1(1), 161 (2002). Google Scholar
- Solid-State Electronics 48(4), 581 (2004). Web of Science, Google Scholar
N. B. Abdallah , Simulation of 2D quantum transport in ultrashort DG-MOSFETS: A fast algorithm using subbands, Proceedings International Conference on Simulation of Semiconductor Processes and Devices (2003) pp. 267–270. Google Scholar- IEEE Electron Device Letters 22(8), 405 (2001). Web of Science, Google Scholar
- Institut für Mikroelektronik Technische Universität Wien, Austria, MINIMOS-NT 2.1 User's Guide (2004) . Google Scholar
- A. Gehring and S. Selberherr, "Evolution of current transport models for engineering applications," Journal of Computational Electronics (2005), in print . Google Scholar
- Applied Physics Letters 84(18), 3693 (2004). Web of Science, Google Scholar
- Applied Physics Letters 84(11), 1946 (2004). Web of Science, Google Scholar
- Letters to Nature 424(6949), 654 (2003). Web of Science, Google Scholar
- Physical Review Letters 87, 256805 (2001). Web of Science, Google Scholar
- Physical Review Letters 89, 126801 (2002). Web of Science, Google Scholar
- Physical Review Letters 89, 106801 (2002). Web of Science, Google Scholar
- Physical Review Letters 92, 048301 (2004). Web of Science, Google Scholar
- Applied Physics Letters 83(24), 5038 (2003). Web of Science, Google Scholar
- Applied Physics Letters 83(12), 2435 (2003). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 51(2), 172 (2004). Web of Science, Google Scholar
M. Pourfath , Improving the ambipolar behavior of Schottky barrier carbon nanotube field effect transistors, Proc. ESSDERC (2004) pp. 429–432. Google Scholar- IEEE Transactions on Nanotechnology 1(4), 255 (2002). Web of Science, Google Scholar
- Journal of Computational Electronics 1, 81 (2002). Web of Science, Google Scholar
- Physical Review 40, 749 (1932). Web of Science, Google Scholar
- Reviews of Modern Physics 62(3), 745 (1990). Web of Science, Google Scholar
- IEEE Transactions on Electron Devices 48(2), 279 (2001). Web of Science, Google Scholar
T. Hoehr , On density-gradient modeling of tunneling through insulators, Proceedings International Conference on Simulation of Semiconductor Processes and Devices (2002) pp. 275–278. Google Scholar- Physica B 314, 72 (2002). Web of Science, Google Scholar
M. Nedjalkov , Wigner transport through tunneling structures - scattering interpretation of the potential operator, Proceedings International Conference on Simulation of Semiconductor Processes and Devices (2002) pp. 187–190. Google Scholar- Physics Letters A 306, 332 (2003). Web of Science, Google Scholar
H. Kosina , Nanotech (2003) pp. 190–193. Google Scholar- Semiconductor Science and Technology 9, 934 (1994). Web of Science, Google Scholar
- Journal of Mathematical and Computer Modelling 23(8/9), 159 (1996). Web of Science, Google Scholar
- Journal of Computational Electronics 2(2-4), 147 (2003). Web of Science, Google Scholar
- A. Gehring and H. Kosina, "Wigner-function based simulation of classic and ballistic transport in scaled DG-MOSFETs using the Monte Carlo method," Journal of Computational Electronics (2005), in print . Google Scholar
- IEICE Transactions on Electronics E82-C(6), 976 (1999). Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out these Notable Titles in Antennas |