World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

From Intricacy to Conciseness: A Progressive Transfer Strategy for EEG-Based Cross-Subject Emotion Recognition

    https://doi.org/10.1142/S0129065722500058Cited by:13 (Source: Crossref)

    Emotion plays a significant role in human daily activities, and it can be effectively recognized from EEG signals. However, individual variability limits the generalization of emotion classifiers across subjects. Domain adaptation (DA) is a reliable method to solve the issue. Due to the nonstationarity of EEG, the inferior-quality source domain data bring negative transfer in DA procedures. To solve this problem, an auto-augmentation joint distribution adaptation (AA-JDA) method and a burden-lightened and source-preferred JDA (BLSP-JDA) approach are proposed in this paper. The methods are based on a novel transfer idea, learning the specific knowledge of the target domain from the samples that are appropriate for transfer, which reduces the difficulty of transfer between two domains. On multiple emotion databases, our model shows state-of-the-art performance.

    References

    • 1. C. Ieracitano, F. C. Morabito, A. Hussain and N. Mammone , A hybrid-domain deep learning-based BCI for discriminating hand motion planning from EEG sources, Int. J. Neural Syst. 31(9) (2021) 2150038. Link, Web of ScienceGoogle Scholar
    • 2. J. Jin, H. Fang, I. Daly, R. Xiao, Y. Miao, X. Wang and A. Cichocki , Optimization of model training based on iterative minimum covariance determinant in motor-imagery BCI, Int. J. Neural Syst. 31(7) (2021) 2150030. Link, Web of ScienceGoogle Scholar
    • 3. J. Shin and C. Im , Performance prediction for a near-infrared spectroscopy-brain-computer interface using resting-state functional connectivity of the prefrontal cortex, Int. J. Neural Syst. 28(10) (2018) 1850023. Link, Web of ScienceGoogle Scholar
    • 4. J. Sorinas, J. C. Fernandez-Troyano, J. M. Ferrandez and E. Fernandez , Cortical asymmetries and connectivity patterns in the valence dimension of the emotional brain, Int. J. Neural Syst. 30(5) (2020) 81–96. Link, Web of ScienceGoogle Scholar
    • 5. A. Burns, H. Adeli and J. A. Buford , Brain-computer interface after nervous system injury, Neuroscientist 20(6) (2014) 639–651. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. J. R. Wolpaw, N. Birbaumer, D. J. Mcfarland, G. Pfurtscheller and T. M. Vaughan , Brain-computer interfaces for communication and control, Commun. ACM. 54(5) (2002) 60. Google Scholar
    • 7. E. Frant, I. Ispas, V. Dragomir, M. Dascalu, E. Zoltan and I. C. Stoica , Voice-based emotion recognition with convolutional neural networks for companion robots, Rom. J. Inf. Sci. Tech. 20(3) (2017) 222–240. Web of ScienceGoogle Scholar
    • 8. P. Hajek, A. Barushka and M. Munk , Neural networks with emotion associations, topic modeling, and supervised term weighting for sentiment analysis, Int. J. Neural Syst. 31(10) (2021) 2150013. Link, Web of ScienceGoogle Scholar
    • 9. G. Alexandridis, J. Aliprantis, K. Michalakis, K. Korovesis, P. Polydoras, P. Tsantilas and G. Caridakis , A knowledge-based deep learning architecture for aspect-based sentiment analysis, Int. J. Neural Syst. 31(10) (2021) 2150046. Link, Web of ScienceGoogle Scholar
    • 10. L. Zhang and D. Tjondronegoro , Facial expression recognition using facial movement features, IEEE Trans. Affect. Comput. 2(4) (2011) 219–229. Crossref, Web of ScienceGoogle Scholar
    • 11. C. Mhl, B. Allison, A. Nijholt and G. Chanel , A survey of affective brain computer interfaces: Principles, state-of-the-art, and challenges, Brain-Comput. Interfaces 1(2) (2014) 66–84. CrossrefGoogle Scholar
    • 12. Y. Tonoyan, D. Looney, D. P. Mandic and M. M. Van Hulle , Discriminating multiple emotional states from EEG using a data-adaptive, multi-scale information-theoretic approach, Int. J. Neural Syst. 26(2) (2016) 1650005. Link, Web of ScienceGoogle Scholar
    • 13. W. L. Zheng and B. L. Lu , Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks, IEEE Trans. Auton. Mental Develop. 7(3) (2015) 162–175. CrossrefGoogle Scholar
    • 14. M. Val-Calvo, J. R. Alvarez-Sanchez, J. M. Ferrandez, A. Daz-Morcillo and E. Fernandez-Jover , Real-time multi-modal estimation of dynamically evoked emotions using, EEG, heart rate, and galvanic skin response, Int. J. Neural Syst. 30(4) (2020) 2050013. Link, Web of ScienceGoogle Scholar
    • 15. H. S. Nogay and H. Adeli , Machine learning for the diagnosis of autism spectrum disorder using brain imaging, Rev. Neurosci. 31(8) (2020) 825–841. Crossref, Web of ScienceGoogle Scholar
    • 16. M. H. Rafiei, K. Kelly, A. Borstad, H. Adeli and L. Gauthier , Predicting improved daily use of the more effected arm post-stroke following constraint-induced movement, Phys. Therapy 99(12) (2019) 1667–1678. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. W. L. Zheng, J. Y. Zhu and B. L. Lu , Identifying stable patterns over time for emotion recognition from EEG, IEEE Trans. Affect. Comput. 10(3) (2017) 417–429. Crossref, Web of ScienceGoogle Scholar
    • 18. X. Q. H, W. L. Zheng and B. L. Lu , Driving fatigue detection with fusion of EEG and forehead EOG, in Proc. Int. Conf. on Neural Networks (IJCNN) (Vancouver, BC, Canada, 2016), pp. 897–904. Google Scholar
    • 19. R. N. Duan, J. Y. Zhu and B. L. Lu , Differential entropy feature for EEG-based emotion classification, in Proc. 6th Int. IEEE EMBS Conf. Neural Encoder (NER) (San Diego, California, USA, 2013), pp. 81–84. CrossrefGoogle Scholar
    • 20. S. Koelstra, C. Muhl, S. Mohammad, J. S. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt and I. Patras , Deap: A database for emotion analysis; using physiological signals, IEEE Trans. Affect. Comput. 3(1) (2012) 18–31. Crossref, Web of ScienceGoogle Scholar
    • 21. S. Katsigiannis and N. Ramzan , DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices, IEEE J. Biomed. Health Inf. 22(1) (2018) 98–107. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. H. Y. Xu and N. P. Konstantinos , EEG-based affect states classification using deep belief networks, in 2016 Digital Media Industry and Academic Forum (DMIAF) (Santorini, Greece, 2016), pp. 148–153. CrossrefGoogle Scholar
    • 23. X. Li, Z. Zhao, D. Song, Y. Zhang, C. Niu, J. Zhang, J. Huo and J. Li , Variational autoencoder based latent factor decoding of multichannel EEG for emotion recognition, in Int. Conf. Bioinformatics and Biomedicine (BIBM) (San Diego, CA, USA, 2019), pp. 684–687. CrossrefGoogle Scholar
    • 24. Y. Li, H. Kambara, Y. Koike and M. Sugiyama , Application of covariate shift adaptation techniques in brain-computer interfaces, IEEE Trans. Bio-Med. Eng. 57(6) (2010) 1318. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. H. Hashimoto, S. Kameda, H. Maezawa, S. Oshino, N. Tani, H. M. Khoo, T. Yanagisawa, T. Yoshimine, H. Kishima and M. Hirata , A swallowing decoder based on deep transfer learning: AlexNet classification of the intracranial electrocorticogram, Int. J. Neural Syst. 31(11) (2021) 2050056. Link, Web of ScienceGoogle Scholar
    • 26. M. Long, Y. Cao, J. Wang and M. I. Jordan , Learning transferable features with deep adaptation networks, in Int. Conf. Machine Learning (PMLR) (Porto, Portugal, 2015), pp. 85–105. Google Scholar
    • 27. H. S. Nogay and H. Adeli , Detection of epileptic seizure using pre-trained deep convolutional neural network and transfer learning, Euro. Neurol. 83(6) (2020) 602–614. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. A. R. Sanabria, F. Zambonelli and J. Ye , Unsupervised domain adaptation in activity recognition: A GAN-based approach, IEEE Access. 9 (2021) 19421–19438. Crossref, Web of ScienceGoogle Scholar
    • 29. Y. M. Jin, Y. D. Luo, W. L. Zheng and B. L. Lu , EEG-based emotion recognition using domain adaptation network, in Proc. Int. Conf. Orange Tech (ICOT) (Singapore, 2017), pp. 222–225. CrossrefGoogle Scholar
    • 30. T. F. Song, W. M. Zheng, P. Song and Z. Cui , EEG emotion recognition using dynamical graph convolutional neural networks, IEEE Trans. Affect. Comput. 11(3) (2018) 532–541. Crossref, Web of ScienceGoogle Scholar
    • 31. H. Li, Y. M. Jin, W. L. Zheng and B. L. Lu , Cross-subject emotion recognition using deep adaptation networks, in Proc. Int. Conf. Neural Information (ICONIP) (Siem Reap, Cambodia, 2018), pp. 403–413. CrossrefGoogle Scholar
    • 32. Y. Luo, S. Y. Zhang, W. L. Zheng and B. L. Lu , WGAN domain adaptation for EEG-based emotion recognition, in Int. Conf. Neural Information Processing (ICONIP) (Siem Reap, Cambodia, 2018), pp. 275–286. CrossrefGoogle Scholar
    • 33. B. Q. Ma, H. Li, W. L. Zheng and B. L. Lu , Reducing the subject variability of EEG signals with adversarial domain generalization, in Int. Conf. Neural Information Processing (ICONIP) (Sydney, Australia, 2019), pp. 30–42. CrossrefGoogle Scholar
    • 34. J. P. Li, S. Qiu, C. D. Du, Y. X. Wang and H. G. He , Domain adaptation for EEG emotion recognition based on latent representation similarity, IEEE Trans. Cogn. Dev. Syst. 12(2) (2019) 344–353. Crossref, Web of ScienceGoogle Scholar
    • 35. F. Wang, W. Zhang, Z. Xu, J. Ping and H. Chu , A deep multi-source adaptation transfer network for cross-subject electroencephalogram emotion recognition, Neural. Comput. App. 33(9) (2021) 1–13. Google Scholar
    • 36. Y. Li, W. M. Zheng, L. Wang, Y. Zong, L. Qi, Z. Cui, T. Zhang and T. Song , A novel bi-hemispheric discrepancy model for eeg emotion recognition, IEEE Tran. Cogn. Dev. Syst. 13(2) (2020) 354–367. Crossref, Web of ScienceGoogle Scholar
    • 37. G. C. Bao, N. Zhuang, B. Yan, J. Shu, L. Y. Wang, Y. Zeng and Z. C. Shen , Two-level domain adaptation neural network for EEG-based emotion recognition, Front. Hum. Neurosci. 14 (2021) 605246. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. H. Chen, M. Jin, Z. Li, C. H. Fan, J. P. Li and H. He, MS-MDA: Multisource marginal distribution adaptation for cross-subject and cross-session EEG emotion recognition, 2107(07740) (2021). Google Scholar
    • 39. Y. X. Wang, S. Qiu, X. L. Ma and H. G. He , A prototype-based SPD matrix network for domain adaptation EEG emotion recognition, Pattern Recognition 110 (2021) 107626. Crossref, Web of ScienceGoogle Scholar
    • 40. S. Aydin, S. Demirtas, K. Ates and M. A. Tunga , Emotion recognition with eigen features of frequency band activities embedded in induced brain oscillations mediated by affective pictures, Int. J. Neural Syst. 10(3) (2017) 417–429. Google Scholar
    • 41. J. Li, S. Qiu, Y. Y. Shen, C. L. Liu and H. He , Multisource transfer learning for cross-subject EEG emotion recognition, IEEE Trans. Cybernet. 50(7) (2019) 3281–3293. Medline, Web of ScienceGoogle Scholar
    • 42. X. Du, C. Ma, G. Zhang, J. Li and H. Wang , An efficient LSTM network for emotion recognition from multichannel EEG signals, IEEE Trans. Affect. Comput. 99(2020) 1–12. Google Scholar
    • 43. G. Wilson, J. R. Doppa and D. J. Cook , Multi-source deep domain adaptation with weak supervision for time-series sensor data, in Proc. 26th ACM SIGKDD Int. Conf. Knowledge Discover Data Mining (San Diego, California, USA, 2020), pp. 1768–1778. CrossrefGoogle Scholar
    • 44. J. Mu, W. Qiu, G. D. Hager and A. L. Yuille , Learning from synthetic animals, in 2020 IEEE/CVF Conf. Computer Visual and Pattern Recognition (CVPR) (Seattle, WA, USA, 2020), pp. 12386–12395. CrossrefGoogle Scholar
    • 45. C. Li and H. L. Gim , From synthetic to real: Unsupervised domain adaptation for animal pose estimation, in Proc. IEEE/CVF Conf. Computer Visual and Pattern Recognition (CVPR) (Vurtual conference, 2021), pp. 1482–1491. CrossrefGoogle Scholar
    • 46. J. Pan, I. W. Tsang, J. T. Kwok and Q. Yang , Domain adaptation via transfer component analysis, IEEE Trans. Neural Networks 22(2) (2011) 199–210. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. M. Long, J. Wang, G. Ding, J. Sun and P. S. Yu , Transfer feature learning with joint distribution adaptation, in Proc. Int. Conf. Computer Visual (ICCV) (Sydney, Australia, 2013), pp. 1414–4854. CrossrefGoogle Scholar
    • 48. P. Hausser, T. Frerix, A. Mordvintsev and D. Cremers , Associative domain adaptation, in Proc. Int. Conf. Computur Visual (ICCV), Vol. 2 (Venice, Italy, 2017), pp. 2784–2792. CrossrefGoogle Scholar
    • 49. Z. R. Lan, O. Sourina, L. P. Wang, R. Scherer and G. R. Mller-Putz , Domain adaptation techniques for EEG-based emotion recognition: A comparative study on two public datasets, IEEE Trans. Cogn. Dev. Syst. 11(1) (2018) 85–94. Crossref, Web of ScienceGoogle Scholar
    • 50. G. E. Hinton and R. S. Ruslan , Reducing the dimensionality of data with neural networks, Science 313(5786) (2006) 504–507. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. S. Connor and K. Taghi , A survey on image data augmentation for deep learning, J. Big Data 6(1) (2019) 1–48. Google Scholar
    • 52. L. Perez and J. Wang, The effectiveness of data augmentation in image classification using deep learning, arXiv:1712.04621. Google Scholar
    • 53. E. Lashgari, D. Liang and U. Maoz , Data augmentation for deep-learning-based electroencephalography, J. Neurosci. Meth. 346 (2020) 108885. Crossref, Medline, Web of ScienceGoogle Scholar
    • 54. F. Lotte , Signal processing approaches to minimize or suppress calibration time in oscillatory activity-based brain-computer interfaces, Proc. IEEE 103(6) (2015) 871–890. Crossref, Web of ScienceGoogle Scholar
    • 55. F. Wang, S. H. Zhong, J. F. Peng, J. M. Jiang and Y Liu , Data augmentation for EEG-based emotion recognition with deep convolutional neural networks, in Int. Conf. Multimedia Modeling (MMM) (Bangkok, Thailand, 2018), pp. 82–93. CrossrefGoogle Scholar
    • 56. Y. Luo, L. Z. Zhu, Z. Y. Wan and B. L. Lu , Data augmentation for enhancing EEG-based emotion recognition with deep generative models, J. Neural Eng. 17(5) (2020) 056021. Crossref, Medline, Web of ScienceGoogle Scholar
    • 57. H. Bcklund, A. Hedblom and N. NeijmanBcklund , A density-based spatial clustering of application with noise, Data Mining TNM033 (2011), pp. 11–30. Google Scholar
    • 58. V. Gupta, M. D. Chopda, R. B. Pachori , Cross-subject emotion recognition using flexible analytic wavelet transform from EEG signals, IEEE Sensors J. 19(6) (2019) 2266–2274. Crossref, Web of ScienceGoogle Scholar
    • 59. Y. Wang, S. Qiu, C. Zhao, W. Yang, J. Li, X. Ma and H. G. He , EEG-based emotion recognition with prototype-based data representation, in Int. Conf. IEEE Engineering Medical and Biological Society (EMBC) (Berlin, Germany, 2019), pp. 684–689. CrossrefGoogle Scholar
    • 60. Y. Wang, S. Qiu, J. Li, X. Ma, Z. Liang, H. Li and H. G. He , EEG-based emotion recognition with similarity learning network, in Int. Conf. IEEE Engineering in Medical and Biological Society (EMBC) (Berlin, Germany, 2019), pp. 1209–1212. CrossrefGoogle Scholar
    • 61. M. A. Rahman, M. F. Hossain, M. Hossain and R. Ahmmed , Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal, Egypt. Inform. J. 21(1) (2020) 23–35. Crossref, Web of ScienceGoogle Scholar
    • 62. W. L. Zheng, J. Zhu, Y. Peng and B. L. Lu , EEG-based emotion classification using deep belief networks, in 2014 IEEE Int. Conf. Multimedia and Expo (ICME), (Chengdu, China, 2014), pp. 1–6. CrossrefGoogle Scholar
    • 63. L. M. Zhao, Y. Xu and B. L. Lu , Plug-and-play domain adaptation for cross-subject EEG-based emotion recognition, in Proc. 35th AAAI Conf. Artificial Intelligence (2021), follows. https://www. aaai.org/AAAI21Papers/AAAI-7688.ZhaoL.pdf CrossrefGoogle Scholar
    • 64. J. Sorinas, M. D. Grima, J. M. Ferrandez and E. Fernandez , Identifying suitable brain regions and trial size segmentation for positive/negative emotion recognition, Int. J. Neural Syst. 29(2) (2019) 1850044. Link, Web of ScienceGoogle Scholar
    • 65. J. Li, Z. Zhang and H. He , Hierarchical convolutional neural networks for EEG-based emotion recognition, Cogn. Comput. 10(2) (2018) 368–380. Crossref, Web of ScienceGoogle Scholar
    • 66. L. J. P. V. D. Maaten and G. E. Hinton , Visualizing high-dimensional data using t-SNE, J. Mach. Learn. Res. 9 (2008) 2579–2605. Web of ScienceGoogle Scholar
    • 67. G. G. Molina, T. Tsoneva and A. Nijholt , Emotional brain-computer interfaces, in Proc. IEEE 3rd Int. Conf. Affective Computing and Intelligence International and Workshops (ACII) (Amsterdam, Holland, 2009), pp. 1–9. CrossrefGoogle Scholar
    • 68. W. Samek, F. C. Meinecke and K. R. Muller , Transferring subspaces between subjects in brain-computer interfacing, IEEE Trans. BME. 60(8) (2013) 2289–2298. Crossref, Medline, Web of ScienceGoogle Scholar
    • 69. H. Morioka, A. Kanemura, J. I. Hirayama, M. Shikauchi, T. Ogaw, S. Ikeda, M. Kawanabe and S. Ishii , Learning a common dictionary for subject-transferd ecoding with resting calibration, NeuroImage 111 (2015) 167–178. Crossref, Medline, Web of ScienceGoogle Scholar
    • 70. D. Wu, Y. Xu and B. L. Lu , Transfer learning for EEG-based brain-computer interfaces: A review of progress made since 2016, IEEE Trans. Cogn. Dev. Syst. 99 (2020) 1–16. Google Scholar
    • 71. W. Li, Z. Zhang and A. G. Song , Physiological-signal-based emotion recognition: An odyssey from methodology to philosophy, Measurement 172(4) (2020) 108747. Google Scholar
    • 72. Y. Yao and G. Doretto , Boosting for transfer learning with multiple sources, in Proc. IEEE Conf. Computing Visual Pattern Recognition (CVPR) (San Francisco, CA, USA, 2010), pp. 1855–1862. CrossrefGoogle Scholar
    • 73. F. Fang, T. Potter, T. Nguyen and Y. C. Zhang , Dynamic reorganization of the cortical functional brain network in affective processing and cognitive reappraisal, Int. J. Neural Syst. 30(10) (2020) 2050051. Link, Web of ScienceGoogle Scholar
    • 74. A. Mehran and H. Adeli , Enhanced probabilistic neural network with local decision circles: A robust classifier, Integrated Computer-Aided Engineering 17(3) (2010) 197–210. Crossref, Web of ScienceGoogle Scholar
    • 75. D. R. Pereira, M. A. Piteri, A. N. Souza, J. Papa and H. Adeli , FEMa: A finite element machine for fast learning, Neural Comput. Appl. 32(10) 2020 6393–6404. Crossref, Web of ScienceGoogle Scholar
    • 76. K. Md. R. Alam, N. Siddique and H. Adeli , A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl. 32(10) (2020) 8675–8690. Crossref, Web of ScienceGoogle Scholar
    • 77. M. H. Rafiei and H. Adeli , A new neural dynamic classification algorithm, IEEE Trans. Neural Networks Learn. Syst. 28(12) (2017) 3074–3083. Crossref, Medline, Web of ScienceGoogle Scholar