World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

One-Shot Neural Architecture Search by Dynamically Pruning Supernet in Hierarchical Order

    https://doi.org/10.1142/S0129065721500295Cited by:12 (Source: Crossref)

    Neural Architecture Search (NAS), which aims at automatically designing neural architectures, recently draw a growing research interest. Different from conventional NAS methods, in which a large number of neural architectures need to be trained for evaluation, the one-shot NAS methods only have to train one supernet which synthesizes all the possible candidate architectures. As a result, the search efficiency could be significantly improved by sharing the supernet’s weights during the candidate architectures’ evaluation. This strategy could greatly speed up the search process but suffer a challenge that the evaluation based on sharing weights is not predictive enough. Recently, pruning the supernet during the search has been proven to be an efficient way to alleviate this problem. However, the pruning direction in complex-structured search space remains unexplored. In this paper, we revisited the role of path dropout strategy, which drops the neural operations instead of the neurons, in supernet training, and several interesting characters of the supernet trained with dropout are found. Based on the observations, a Hierarchically-Ordered Pruning Neural Architecture Search (HOPNAS) algorithm is proposed by dynamically pruning the supernet with a proper pruning direction. Experimental results indicate that our method is competitive with state-of-the-art approaches on CIFAR10 and ImageNet.

    References

    • 1. W. Wang, Y. Yang, X. Wang, W. Wang and J. Li , Development of convolutional neural network and its application in image classification: A survey, Opt. Eng. 58(4) (2019) 040901. Crossref, Web of ScienceGoogle Scholar
    • 2. X. Wu, D. Sahoo and S. C. Hoi , Recent advances in deep learning for object detection, Neurocomputing 396 (2020) 39–64. Crossref, Web of ScienceGoogle Scholar
    • 3. F. Charte, A. J. Rivera, F. Martínez and M. J. del Jesus, Evoaaa: An evolutionary methodology for automated neural autoencoder architecture search, Integr. Comput.-Aided Eng. (preprint) (2020) 1–21. Google Scholar
    • 4. S. Chen, Y. Leng and S. Labi , A deep learning algorithm for simulating autonomous driving considering prior knowledge and temporal information, Comput.-Aided Civ. Infrastruct. Eng. 35(4) (2020) 305–321. Crossref, Web of ScienceGoogle Scholar
    • 5. M.-A. Zöller and M. F. Huber , Benchmark and survey of automated machine learning frameworks, Journal of Artificial Intelligence Research 70 (2021) 409–474. Crossref, Web of ScienceGoogle Scholar
    • 6. B. Zoph and Q. V. Le, Neural architecture search with reinforcement learning (2016), arXiv preprint, arXiv:1611.01578. Google Scholar
    • 7. H. Liu, K. Simonyan and Y. Yang, Darts: Differentiable architecture search (2018), arXiv preprint, arXiv:1806.09055. Google Scholar
    • 8. C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille and L. Fei-Fei , Auto-deeplab: Hierarchical neural architecture search for semantic image segmentation, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (2019), pp. 82–92. CrossrefGoogle Scholar
    • 9. Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan and J. Sun, Detnas: Neural architecture search on object detection (2019), arXiv preprint, arXiv:1903.10979. Google Scholar
    • 10. B. Zoph, V. Vasudevan, J. Shlens and Q. V. Le , Learning transferable architectures for scalable image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (2018), pp. 8697–8710. CrossrefGoogle Scholar
    • 11. M. Wistuba, A. Rawat and T. Pedapati, A survey on neural architecture search (2019), arXiv preprint, arXiv:1905.01392. Google Scholar
    • 12. H. Pham, M. Y. Guan, B. Zoph, Q. V. Le and J. Dean, Efficient neural architecture search via parameter sharing (2018), arXiv preprint, arXiv:1802.03268. Google Scholar
    • 13. L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, Z. Chen, L. Wang, A. Xiao, J. Chang, X. Zhang et al., Weight-sharing neural architecture search: A battle to shrink the optimization gap (2020), arXiv preprint, arXiv:2008.01475. Google Scholar
    • 14. G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan and Q. Le , Understanding and simplifying one-shot architecture search, Int. Conf. Machine Learning (2018), pp. 550–559. Google Scholar
    • 15. K. Yu, C. Sciuto, M. Jaggi, C. Musat and M. Salzmann, Evaluating the search phase of neural architecture search (2019), arXiv preprint, arXiv:1902.08142. Google Scholar
    • 16. Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei and J. Sun, Single path one-shot neural architecture search with uniform sampling, (2019), arXiv preprint, arXiv:1904.00420. Google Scholar
    • 17. X. Li, C. Lin, C. Li, M. Sun, W. Wu, J. Yan and W. Ouyang , Improving one-shot nas by suppressing the posterior fading, in Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition (2020), pp. 13836–13845. CrossrefGoogle Scholar
    • 18. K. He, X. Zhang, S. Ren and J. Sun , Deep residual learning for image recognition, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (2016), pp. 770–778. CrossrefGoogle Scholar
    • 19. G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger , Densely connected convolutional networks, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (2017), pp. 4700–4708. CrossrefGoogle Scholar
    • 20. F. Zamora-Martinez and M. J. Castro-Bleda , Efficient embedded decoding of neural network language models in a machine translation system, Int. J. Neural Syst. 28(9) (2018) 1850007. Link, Web of ScienceGoogle Scholar
    • 21. A. Krizhevsky, I. Sutskever and G. E. Hinton , Imagenet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25 (2012) 1097–1105. Google Scholar
    • 22. K. He, G. Gkioxari, P. Dollár and R. Girshick , Mask r-cnn, in Proc. IEEE Int. Conf. Computer Vision (2017), pp. 2961–2969. CrossrefGoogle Scholar
    • 23. G. B. Martins, J. P. Papa and H. Adeli , Deep learning techniques for recommender systems based on collaborative filtering, Expert Syst. 37(6) (2020) e12647. Crossref, Web of ScienceGoogle Scholar
    • 24. P. Mishra, C. Piciarelli and G. L. Foresti , A neural network for image anomaly detection with deep pyramidal representations and dynamic routing, Int. J. Neural Syst. 30(10) (2020) 2050060–2050060. Link, Web of ScienceGoogle Scholar
    • 25. F. Ni, J. Zhang and M. N. Noori , Deep learning for data anomaly detection and data compression of a long-span suspension bridge, Comput.-Aided Civ. Infrastruct. Eng. 35(7) (2020) 685–700. Crossref, Web of ScienceGoogle Scholar
    • 26. G. Liu, W. Zhou and M. Geng , Automatic seizure detection based on s-transform and deep convolutional neural network, Int. J. Neural Syst. 30(4) (2020) 1950024. Link, Web of ScienceGoogle Scholar
    • 27. L.-C. Lin, C.-S. Ouyang, R.-C. Wu, R.-C. Yang and C.-T. Chiang , Alternative diagnosis of epilepsy in children without epileptiform discharges using deep convolutional neural networks, Int. J. Neural Syst. 30(5) (2020) 1850060. Link, Web of ScienceGoogle Scholar
    • 28. D. Collazos-Huertas, D. Cárdenas-Peña and G. Castellanos-Dominguez , Instance-based representation using multiple kernel learning for predicting conversion to alzheimer disease, Int. J. Neural Syst. 29(2) (2019) 1850042. Link, Web of ScienceGoogle Scholar
    • 29. F. C. Morabito, M. Campolo, N. Mammone, M. Versaci, S. Franceschetti, F. Tagliavini, V. Sofia, D. Fatuzzo, A. Gambardella, A. Labate et al., Deep learning representation from electroencephalography of early-stage creutzfeldt-jakob disease and features for differentiation from rapidly progressive dementia, Int. J. Neural Syst. 27(2) (2017) 1650039. Link, Web of ScienceGoogle Scholar
    • 30. J. Mo, L. Zhang and Y. Feng , Exudate-based diabetic macular edema recognition in retinal images using cascaded deep residual networks, Neurocomputing 290 (2018) 161–171. Crossref, Web of ScienceGoogle Scholar
    • 31. L. Wang, L. Zhang, M. Zhu, X. Qi and Z. Yi , Automatic diagnosis for thyroid nodules in ultrasound images by deep neural networks, Med. Image Anal. 61 (2020) 101665. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. J. Bergstra and Y. Bengio , Random search for hyper-parameter optimization, J. Mach. Learn. Res. 13(1) (2012) 281–305. Google Scholar
    • 33. J. Bergstra, D. Yamins and D. Cox , Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures, Int. Conf. Machine Learning (2013), pp. 115–123. Google Scholar
    • 34. D. Floreano, P. Dürr and C. Mattiussi , Neuroevolution: From architectures to learning, Evol. Intell. 1(1) (2008) 47–62. CrossrefGoogle Scholar
    • 35. E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. Le and A. Kurakin, Large-scale evolution of image classifiers (2017), arXiv preprint, arXiv:1703.01041. Google Scholar
    • 36. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy et al., Evolving deep neural networks, in Artificial Intelligence in the Age of Neural Networks and Brain Computing (Elsevier, 2019), pp. 293–312. CrossrefGoogle Scholar
    • 37. X. Chu, B. Zhang, R. Xu and J. Li, Fairnas: Rethinking evaluation fairness of weight sharing neural architecture search (2019), arXiv preprint, arXiv:1907.01845. Google Scholar
    • 38. H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang and Z. Li, Darts+: Improved differentiable architecture search with early stopping (2019), arXiv preprint, arXiv:1909.06035. Google Scholar
    • 39. X. Chu, T. Zhou, B. Zhang and J. Li, Fair darts: Eliminating unfair advantages in differentiable architecture search (2019), arXiv preprint, arXiv:1911.12126. Google Scholar
    • 40. X. Chen, L. Xie, J. Wu and Q. Tian , Progressive differentiable architecture search: Bridging the depth gap between search and evaluation, in Proc. IEEE Int. Conf. Computer Vision (2019), pp. 1294–1303. CrossrefGoogle Scholar
    • 41. C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang and K. Murphy , Progressive neural architecture search, in Proc. European Conf. Computer Vision (ECCV) (2018), pp. 19–34. CrossrefGoogle Scholar
    • 42. H. Liu, K. Simonyan, O. Vinyals, C. Fernando and K. Kavukcuoglu, Hierarchical representations for efficient architecture search (2017), arXiv preprint, arXiv:1711.00436. Google Scholar
    • 43. G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors (2012), arXiv preprint, arXiv:1207.0580. Google Scholar
    • 44. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov , Dropout: A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res. 15(1) (2014) 1929–1958. Google Scholar
    • 45. B. Zhou, Y. Sun, D. Bau and A. Torralba, Revisiting the importance of individual units in cnns via ablation (2018), arXiv preprint, arXiv:1806.02891. Google Scholar
    • 46. C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy and F. Hutter , Nas-bench-101: Towards reproducible neural architecture search, Int. Conf. Machine Learning (2019), pp. 7105–7114. Google Scholar
    • 47. M. G. Kendall , A new measure of rank correlation, Biometrika 30(1/2) (1938) 81–93. CrossrefGoogle Scholar
    • 48. L. Hu, S. Wang, L. Li and Q. Huang , How functions evolve in deep convolutional neural network, 2018 14th IEEE Int. Conf. Signal Processing (ICSP) (IEEE, 2018), pp. 1133–1138. CrossrefGoogle Scholar
    • 49. H. Cai, L. Zhu and S. Han, Proxylessnas: Direct neural architecture search on target task and hardware (2018), arXiv preprint, arXiv:1812.00332. Google Scholar
    • 50. M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard and Q. V. Le , Mnasnet: Platform-aware neural architecture search for mobile, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (2019), pp. 2820–2828. CrossrefGoogle Scholar
    • 51. K. Deb, A. Pratap, S. Agarwal and T. Meyarivan , A fast and elitist multiobjective genetic algorithm: Nsga-ii, IEEE Trans. Evol. Comput. 6(2) (2002) 182–197. Crossref, Web of ScienceGoogle Scholar
    • 52. S. Rostami and F. Neri , Covariance matrix adaptation pareto archived evolution strategy with hypervolume-sorted adaptive grid algorithm, Integr. Comput.-Aided Eng. 23(4) (2016) 313–329. Crossref, Web of ScienceGoogle Scholar
    • 53. S. Rostami, F. Neri and M. Epitropakis , Progressive preference articulation for decision making in multi-objective optimisation problems, Integr. Comput.-Aided Eng. 24(4) (2017) 315–335. Crossref, Web of ScienceGoogle Scholar
    • 54. E. Real, A. Aggarwal, Y. Huang and Q. V. Le , Regularized evolution for image classifier architecture search, in Proc. AAAI Conf. Artificial Intelligence, Vol. 33 (2019), pp. 4780–4789. CrossrefGoogle Scholar
    • 55. R. Luo, F. Tian, T. Qin, E. Chen and T.-Y. Liu , Neural architecture optimization, in Advances in Neural Information Processing Systems (2018), pp. 7816–7827. Google Scholar
    • 56. Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian and H. Xiong , Pc-darts: Partial channel connections for memory-efficient architecture search, Int. Conf. Learning Representations (2019). Google Scholar
    • 57. H. Zhou, M. Yang, J. Wang and W. Pan, Bayesnas: A Bayesian approach for neural architecture search (2019), arXiv preprint, arXiv:1905.04919. Google Scholar
    • 58. T. DeVries and G. W. Taylor, Improved regularization of convolutional neural networks with cutout (2017), arXiv preprint, arXiv:1708.04552. Google Scholar
    • 59. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich , Going deeper with convolutions, in Proc. IEEE Conf. Computer Vision and Pattern Recognition (2015), pp. 1–9. CrossrefGoogle Scholar
    • 60. A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto and H. Adam, Mobilenets: Efficient convolutional neural networks for mobile vision applications (2017), arXiv preprint, arXiv:1704.04861. Google Scholar
    • 61. X. Zhang, X. Zhou, M. Lin and J. Sun, An extremely efficient convolutional neural network for mobile devices (2017), arXiv preprint, arXiv:1707.01083. Google Scholar
    • 62. N. Ma, X. Zhang, H.-T. Zheng and J. Sun , Shufflenet v2: Practical guidelines for efficient cnn architecture design, in Proc. European Conf. Computer Vision (ECCV) (2018), pp. 116–131. CrossrefGoogle Scholar
    • 63. S. Xie, H. Zheng, C. Liu and L. Lin, Snas: Stochastic neural architecture search, International Conference on Learning Representations (New Orleans, 2019). Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!