World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Incorporating Uncertainty in Data Labeling into Automatic Detection of Interictal Epileptiform Discharges from Concurrent Scalp-EEG via Multi-way Analysis

    https://doi.org/10.1142/S0129065721500192Cited by:11 (Source: Crossref)
    This article is part of the issue:

    Interictal epileptiform discharges (IEDs) are elicited from an epileptic brain, whereas they can also be due to other neurological abnormalities. The diversity in their morphologies, their strengths, and their sources within the brain cause a great deal of uncertainty in their labeling by clinicians. The aim of this study is therefore to exploit and incorporate this uncertainty (the probability of the waveform being an IED) in the IED detection system which combines spatial component analysis (SCA) with the IED probabilities referred to as SCA-IEDP-based method. For comparison, we also propose and study SCA-based method in which probability of the waveform being an IED is ignored. The proposed models are employed to detect IEDs in two different classification approaches: (1) subject-dependent and (2) subject-independent classification approaches. The proposed methods are compared with two other state-of-the-art methods namely, time–frequency features and tensor factorization methods. The proposed SCA-IEDP model has achieved superior performance in comparison with the traditional SCA and other competing methods. It achieved 79.9% and 63.4% accuracy values in subject-dependent and subject-independent classification approaches, respectively. This shows that considering the IED probabilities in designing an IED detection system can boost its performance.

    References

    • 1. U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis and J. S. Suri , Automated EEG analysis of epilepsy: A review, Knowl.-Based Syst. 45 (2013) 147–165. Crossref, Web of ScienceGoogle Scholar
    • 2. S. Sanei , Adaptive Processing of Brain Signals (John Wiley & Sons, 2013). CrossrefGoogle Scholar
    • 3. J. J. Halford , Computerized epileptiform transient detection in the scalp electroencephalogram: Obstacles to progress and the example of computerized ECG interpretation, Clin. Neurophysiol. 120(11) (2009) 1909–1915. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. S. Kovac, V. N. Vakharia, C. Scott and B. Diehl , Invasive epilepsy surgery evaluation, Seizure 44 (2017) 125–136. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. D. Nayak, A. Valentin, G. Alarcon, J. J. G. Seoane, F. Brunnhuber, J. Juler, C. E. Polkey and C. D. Binnie , Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges, Clin. Neurophysiol. 115(6) (2004) 1423–1435. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. M. Yamazaki, D. M. Tucker, A. Fujimoto, T. Yamazoe, T. Okanishi, T. Yokota, H. Enoki and T. Yamamoto , Comparison of dense array EEG with simultaneous intracranial EEG for interictal spike detection and localization, Epilepsy Res. 98(2–3) (2012) 166–173. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. G. Alarcon, C. Guy, C. Binnie, S. Walker, R. Elwes and C. Polkey , Intracerebral propagation of interictal activity in partial epilepsy: Implications for source localisation, J. Neurol. Neurosurg. Psychiatry 57(4) (1994) 435–449. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. A. Ray, J. X. Tao, S. M. Hawes-Ebersole and J. S. Ebersole , Localizing value of scalp EEG spikes: A simultaneous scalp and intracranial study, Clin. Neurophysiol. 118(1) (2007) 69–79. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. D. Cosandier-Rimélé, I. Merlet, J.-M. Badier, P. Chauvel and F. Wendling , The neuronal sources of EEG: Modeling of simultaneous scalp and intracerebral recordings in epilepsy, NeuroImage 42(1) (2008) 135–146. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. R. Janca, P. Jezdik, R. Cmejla, M. Tomasek, G. A. Worrell, M. Stead, J. Wagenaar, J. G. Jefferys, P. Krsek, V. Komarek et al., Detection of interictal epileptiform discharges using signal envelope distribution modelling: Application to epileptic and non-epileptic intracranial recordings, Brain Topogr. 28(1) (2015) 172–183. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. A. Antoniades, L. Spyrou, D. Martin-Lopez, A. Valentin, G. Alarcon, S. Sanei and C. C. Took , Detection of interictal discharges with convolutional neural networks using discrete ordered multichannel intracranial EEG, IEEE Trans. Neural Syst. Rehabil. Eng. 25(12) (2017) 2285–2294. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. L. Koessler, T. Cecchin, S. Colnat-Coulbois, J.-P. Vignal, J. Jonas, H. Vespignani, G. Ramantani and L. G. Maillard , Catching the invisible: Mesial temporal source contribution to simultaneous EEG and SEEG recordings, Brain Topogr. 28(1) (2015) 5–20. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. K. Indiradevi, E. Elias, P. Sathidevi, S. D. Nayak and K. Radhakrishnan , A multi-level wavelet approach for automatic detection of epileptic spikes in the electroencephalogram, Comput. Biol. Med. 38(7) (2008) 805–816. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. E. Bagheri, J. Jin, J. Dauwels, S. Cash and M. B. Westover , A fast machine learning approach to facilitate the detection of interictal epileptiform discharges in the scalp electroencephalogram, J. Neurosci. Methods 326 (2019) 108362. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. H. Wieser, C. Elger and S. Stodieck , The “foramen ovale electrode”: A new recording method for the preoperative evaluation of patients suffering from mesio-basal temporal lobe epilepsy, Electroencephalogr. Clin. Neurophysiol. 61(4) (1985) 314–322. Crossref, MedlineGoogle Scholar
    • 16. S. A. Sheth, J. P. Aronson, M. M. Shafi, H. W. Phillips, N. Velez-Ruiz, B. P. Walcott, C.-S. Kwon, M. K. Mian, A. R. Dykstra, A. Cole et al., Utility of foramen ovale electrodes in mesial temporal lobe epilepsy, Epilepsia 55(5) (2014) 713–724. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. M. Sparkes, A. Valentin and G. Alarcon , Mechanisms involved in the conduction of anterior temporal epileptiform discharges to the scalp, Clin. Neurophysiol. 120(12) (2009) 2063–2070. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. I. Karakis, N. Velez-Ruiz, J. S. Pathmanathan, S. A. Sheth, E. N. Eskandar and A. J. Cole , Foramen ovale electrodes in the evaluation of epilepsy surgery: Conventional and unconventional uses, Epilepsy Behav. 22(2) (2011) 247–254. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. L. Spyrou, D. Martín-Lopez, A. Valentín, G. Alarcón and S. Sanei , Detection of intracranial signatures of interictal epileptiform discharges from concurrent scalp EEG, Int. J. Neural Syst. 26(04) (2016) 1650016. Link, Web of ScienceGoogle Scholar
    • 20. A. Antoniades, L. Spyrou, D. Martin-Lopez, A. Valentin, G. Alarcon, S. Sanei and C. C. Took , Deep neural architectures for mapping scalp to intracranial EEG, Int. J. Neural Syst. 28(08) (2018) 1850009. Link, Web of ScienceGoogle Scholar
    • 21. L. Spyrou, S. Kouchaki and S. Sanei , Multiview classification and dimensionality reduction of scalp and intracranial EEG data through tensor factorisation, J. Signal Process. Syst. 90(2) (2018) 273–284. Crossref, Web of ScienceGoogle Scholar
    • 22. A. H. Phan and A. Cichocki , Tensor decompositions for feature extraction and classification of high dimensional datasets, Nonlinear Theory Appl. IEICE 1(1) (2010) 37–68. CrossrefGoogle Scholar
    • 23. S. Kouchaki, S. Sanei, E. L. Arbon and D.-J. Dijk , Tensor based singular spectrum analysis for automatic scoring of sleep EEG, IEEE Trans. Neural Syst. Rehabil. Eng. 23(1) (2014) 1–9. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. L. T. Thanh, N. T. A. Dao, N. V. Dung, N. L. Trung and K. Abed-Meraim , Multi-channel EEG epileptic spike detection by a new method of tensor decomposition, J. Neural Eng. 17 (2020) 016023. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. N. Kane, J. Acharya, S. Beniczky, L. Caboclo, S. Finnigan, P. W. Kaplan, H. Shibasaki, R. Pressler and M. J. van Putten , A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017, Clin. Neurophysiol. Pract. 2 (2017) 170. Crossref, MedlineGoogle Scholar
    • 26. J. J. Halford, R. J. Schalkoff, J. Zhou, S. R. Benbadis, W. O. Tatum, R. P. Turner, S. R. Sinha, N. B. Fountain, A. Arain, P. B. Pritchard et al., Standardized database development for EEG epileptiform transient detection: EEGnet scoring system and machine learning analysis, J. Neurosci. Methods 212(2) (2013) 308–316. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. J. J. Halford, M. B. Westover, S. M. LaRoche, M. P. Macken, E. Kutluay, J. C. Edwards, L. Bonilha, G. P. Kalamangalam, K. Ding, J. L. Hopp et al., Interictal epileptiform discharge detection in EEG in different practice settings, J. Clin. Neurophysiol. 35(5) (2018) 375. Crossref, Medline, Web of ScienceGoogle Scholar
    • 28. J. J. Halford, A. Arain, G. P. Kalamangalam, S. M. LaRoche, B. Leonardo, M. Basha, N. J. Azar, E. Kutluay, G. U. Martz, W. J. Bethany et al., Characteristics of EEG interpreters associated with higher interrater agreement, J. Clin. Neurophysiol. 34(2) (2017) 168. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. E. Acar, D. M. Dunlavy and T. G. Kolda , A scalable optimization approach for fitting canonical tensor decompositions, J. Chemometr. 25(2) (2011) 67–86. Crossref, Web of ScienceGoogle Scholar
    • 30. E. Acar, D. M. Dunlavy, T. G. Kolda and M. Mørup , Scalable tensor factorizations for incomplete data, Chemometr. Intell. Lab. Syst. 106(1) (2011) 41–56. Crossref, Web of ScienceGoogle Scholar
    • 31. T. G. Kolda and B. W. Bader , Tensor decompositions and applications, SIAM Rev. 51(3) (2009) 455–500. Crossref, Web of ScienceGoogle Scholar
    • 32. T. G. Kolda, Multilinear operators for higher-order decompositions, tech. report, Sandia National Laboratories (2006). Google Scholar
    • 33. R. Harshman, Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multimodal factor analysis, UCLA Working Papers in Phonetics (1970). Google Scholar
    • 34. S. Haykin , Neural Networks and Learning Machines (Prentice Hall, New York, 2009). Google Scholar
    • 35. O. Faust, U. R. Acharya, H. Adeli and A. Adeli , Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis, Seizure 26 (2015) 56–64. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. H. Adeli, Z. Zhou and N. Dadmehr , Analysis of EEG records in an epileptic patient using wavelet transform, J. Neurosci. Methods 123(1) (2003) 69–87. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. U. R. Acharya, Y. Hagiwara and H. Adeli , Automated seizure prediction, Epilepsy Behav. 88 (2018) 251–261. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. P. W. Mirowski, Y. LeCun, D. Madhavan and R. Kuzniecky , Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG, in 2008 IEEE Workshop on Machine Learning for Signal Processing (IEEE, 2008), pp. 244–249. CrossrefGoogle Scholar
    • 39. S. Sun, C. Zhang and D. Zhang , An experimental evaluation of ensemble methods for EEG signal classification, Pattern Recognit. Lett. 28(15) (2007) 2157–2163. Crossref, Web of ScienceGoogle Scholar
    • 40. J. R. Quinlan , Bagging, boosting, and c4.5, in Proceedings of Thirteenth National Conf. Artificial Intelligence and Eighth Innovative Applications of Artificial Intelligence Conf. (AAAI/IAAI), Vol. 1 (AAAI Press, 1996), pp. 725–730. Google Scholar
    • 41. F. I. Argoud, F. M. De Azevedo, J. M. Neto and E. Grillo , SADE: An effective system for automated detection of epileptiform events in long-term EEG based on context information, Med. Biol. Eng. Comput. 44(6) (2006) 459–470. Crossref, Medline, Web of ScienceGoogle Scholar
    • 42. J. Thomas, J. Jin, P. Thangavel, E. Bagheri, R. Yuvaraj, J. Dauwels, R. Rathakrishnan, J. J. Halford, S. S. Cash and B. Westover , Automated detection of interictal epileptiform discharges from scalp electroencephalograms by convolutional neural networks, Int. J. Neural Syst. 30 (2020) 2050030. Link, Web of ScienceGoogle Scholar
    • 43. E. Aanestad, N. E. Gilhus and J. Brogger , Interictal epileptiform discharges vary across age groups, Clin. Neurophysiol. 131(1) (2020) 25–33. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. M. H. Rafiei and H. Adeli , A new neural dynamic classification algorithm, IEEE Trans. Neural Netw. Learn. Syst. 28(12) (2017) 3074–3083. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. K. M. R. Alam, N. Siddique and H. Adeli , A dynamic ensemble learning algorithm for neural networks, Neural Comput. Appl. 32(12) (2020) 8675–8690. Crossref, Web of ScienceGoogle Scholar
    • 46. D. R. Pereira, M. A. Piteri, A. N. Souza, J. P. Papa and H. Adeli , FEMa: A finite element machine for fast learning, Neural Comput. Appl. 32(10) (2020) 6393–6404. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!