World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Dyslexia Diagnosis by EEG Temporal and Spectral Descriptors: An Anomaly Detection Approach

    https://doi.org/10.1142/S012906572050029XCited by:35 (Source: Crossref)

    Diagnosis of learning difficulties is a challenging goal. There are huge number of factors involved in the evaluation procedure that present high variance among the population with the same difficulty. Diagnosis is usually performed by scoring subjects according to results obtained in different neuropsychological (performance-based) tests specifically designed to this end. One of the most frequent disorders is developmental dyslexia (DD), a specific difficulty in the acquisition of reading skills not related to mental age or inadequate schooling. Its prevalence is estimated between 5% and 12% of the population. Traditional tests for DD diagnosis aim to measure different behavioral variables involved in the reading process. In this paper, we propose a diagnostic method not based on behavioral variables but on involuntary neurophysiological responses to different auditory stimuli. The experiments performed use electroencephalography (EEG) signals to analyze the temporal behavior and the spectral content of the signal acquired from each electrode to extract relevant (temporal and spectral) features. Moreover, the relationship of the features extracted among electrodes allows to infer a connectivity-like model showing brain areas that process auditory stimuli in a synchronized way. Then an anomaly detection system based on the reconstruction residuals of an autoencoder using these features has been proposed. Hence, classification is performed by the proposed system based on the differences in the resulting connectivity models that have demonstrated to be a useful tool for differential diagnosis of DD as well as a method to step towards gaining a better knowledge of the brain processes involved in DD. The results corroborate that nonspeech stimulus modulated at specific frequencies related to the sampling processes developed in the brain to capture rhymes, syllables and phonemes produces effects in specific frequency bands that differentiate between controls and DD subjects. The proposed method showed relatively high sensitivity above 0.6, and up to 0.9 in some of the experiments.

    References

    • 1. G. Lyon, J. Fletcher, S. Shaywitz, B. Shaywitz, J. Torgesen, F. Wood and R. Olson, Rethinking learning disabilities, in Rethinking Special Education for a New Century (Thomas, B. Fordham Foundation and the Progressive Policy Institute, 2001), 259–287. Google Scholar
    • 2. G. R. Lyon, S. E. Shaywitz and B. A. Shaywitz, A definition of dyslexia, Ann. Dyslexia 53(1) (2003) 1–14. Crossref, Web of ScienceGoogle Scholar
    • 3. R. Peterson and B. Pennington, Developmental dyslexia, Lancet 379 (2012) 1997–2007. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. H. Perera, M. F. Shiratuddin, K. W. Wong and K. Fullarton, EEG signal analysis of real-word reading and nonsense-word reading between adults with dyslexia and without dyslexia, in Proc. 2017 IEEE 30th Int. Symp. Computer-Based Medical Systems (CBMS) (2017), pp. 73–78. CrossrefGoogle Scholar
    • 5. S. Shaywitz, R. Morris and B. Shaywitz, The education of dyslexic children from childhood to young adulthood, Ann. Rev. Psychol. 59 (2008) 451–475. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. P. A. Thompson, C. Hulme, H. M. Nash, D. Gooch, E. Hayiou-Thomas and M. J. Snowling, Developmental dyslexia: Predicting individual risk, J. Child Psychol. Psychiatry 56(9) (2015) 976–987. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. M. Caravolas, The nature and causes of dyslexia in different languages, in The Science of Reading: A Handbook (John Wiley & Sons, 2008), pp. 336–355. Google Scholar
    • 8. A. Galaburda, J. Loturco, F. Ramus, R. Fitch and G. Rosen, From genes to behavior in developmental dyslexia, Nat. Neurosci. 9(10) (2006) 1213–1217. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. I. Lieder, V. Adam, O. Frenkel, S. Jaffe-Dax, M. Sahani and M. Ahissar, Perceptual bias reveals slow-updating in autism and fast-forgetting in dyslexia, Nat. Neurosci. 22 (2019) 256–264. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. E. A. Ferrn and R. P. J. Perazzo, Dyslexic behaviour of feedforward neural networks, Int. J. Neural Syst. 01(3) (1990) 237–245. LinkGoogle Scholar
    • 11. N. Mammone, L. Bonanno, S. D. Salvo, S. Marino, P. Bramanti, A. Bramanti and F. C. Morabito, Permutation disalignment index as an indirect, EEG-based, measure of brain connectivity in MCI and AD patients, Int. J. Neural Syst. 27(5) (2017) 1750020. Link, Web of ScienceGoogle Scholar
    • 12. G. Mirzaei, A. Adeli and H. Adeli, Imaging and machine learning techniques for diagnosis of Alzheimer’s disease, Rev. Neurosci. 27(8) (2016) 857–870. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. S. George and S. Adeli, EEG-MEG and imaging-based diagnosis of Alzheimer’s disease, Rev. Neurosci. 24 (2013) 563–576. Medline, Web of ScienceGoogle Scholar
    • 14. F. C. Morabito, M. Campolo, D. Labate, G. Morabito, L. Bonanno, A. Bramanti, S. D. Salvo, A. Marra and P. Bramanti, A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach, Int. J. Neural Syst. 25(2) (2015) 1550005. Link, Web of ScienceGoogle Scholar
    • 15. G. Gálvez, M. Recuero, L. Canuet and F. Del-Pozo, Short-term effects of binaural beats on EEG power, functional connectivity, cognition, gait and anxiety in Parkinson’s disease, Int. J. Neural Syst. 28(5) (2018) 1750055. Link, Web of ScienceGoogle Scholar
    • 16. N. Jackson, S. R. Cole, B. Voytek and N. C. Swann, Characteristics of waveform shape in Parkinson’s disease detected with scalp electroencephalography, eNeuro 6(3) (2019) ENEURO.0151-19.2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. H. Adeli, Z. Zhou and N. Dadmehr, Analysis of EEG records in an epileptic patient using wavelet transform, J. Neurosci. Methods 123(1) (2003) 69–87. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. S. J. M. Smith, EEG in the diagnosis, classification, and management of patients with epilepsy, J. Neurol. Neurosurg. Psychiatry 76(Suppl. 2) (2005) ii2–ii7. MedlineGoogle Scholar
    • 19. Q. Yuan, W. Zhou, S. Yuan, X. Li, J. Wang and G. Jia, Epileptic EEG classification based on kernel sparse representation, Int. J. Neural Syst. 24(4) (2014) 1450015. Link, Web of ScienceGoogle Scholar
    • 20. Y. Li, S. Tong, D. Liu, Y. Gai, X. Wang, J. Wang, Y. Qiu and Y. Zhu, Abnormal EEG complexity in patients with schizophrenia and depression, Clin. Neurophysiol. 119(6) (2008) 1232–1241. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. V. Chandola, A. Banerjee and V. Kumar, Anomaly detection: A survey, ACM Comput. Surv. 41 (2009) 447–465. Crossref, Web of ScienceGoogle Scholar
    • 22. V. Kotu and B. Deshpande, Anomaly detection, in Data Science, 2nd Edn., eds. V. Kotu and B. Deshpande (Morgan Kaufmann, 2019), pp. 447–465. CrossrefGoogle Scholar
    • 23. M. Laasonen, J. Väre, H. Oksanen-Hennah, S. Leppämäki, P. Tani, H. Harno, L. Hokkanen, E. Pothos and A. Cleeremans, Project DyAdd: Implicit learning in adult dyslexia and ADHD, Ann. Dyslexia 64 (2014) 1–33. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. A. Giménez, A. Ortiz, M. López-Zamora, A. Sánchez and J. L. Luque, Parents’ reading history as an indicator of risk for reading difficulties, Ann. Dyslexia 67 (2017) 259–280. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. M. Arns, S. Peters, R. Breteler and L. Verhoeven, Different brain activation patterns in dyslexic children: Evidence from EEG power and coherence patterns for the double-deficit theory of dyslexia, J. Integr. Neurosci. 6 (2007) 175–190. LinkGoogle Scholar
    • 26. N. B. Mohamad, K. Y. Lee, W. Mansor, Z. Mahmoodin and S. Amirin, Normal and dyslexic children: EEG topography versus fMRI brain images during letters writing, in Proc. 2016 IEEE EMBS Conf. Biomedical Engineering and Sciences (IECBES) (2016), pp. 291–295. CrossrefGoogle Scholar
    • 27. V. N. Vapnik, Statistical Learning Theory (Wiley-Interscience, 1998). Google Scholar
    • 28. G. Z̆arić, J. M. Correia, G. F. González, J. Tijms, M. W. van der Molen, L. Blomert and M. Bonte, Altered patterns of directed connectivity within the reading network of dyslexic children and their relation to reading dysfluency, Dev. Cogn. Neurosci. 23 (2017) 1–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. G. F. González, M. V. der Molen, G. Z̆arić, M. Bonte, J. Tijms, L. Blomert, C. Stam and M. V. der Molen, Graph analysis of EEG resting state functional networks in dyslexic readers, Clin. Neurophysiol. 127(9) (2016) 3165–3175. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. C. J. Stam, G. Nolte and A. Daffertshofer, Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources, Hum. Brain Mapp. 28(11) (2007) 1178–1193. Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. L. Bradley and P. Bryant, Difficulties in auditory organisation as a possible cause of reading backwardness, Nature 271 (1978) 746–747. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. S. Brady, D. Shankweiler and V. Mann, Speech perception and memory coding in relation to reading ability, J. Exp. Child Psychol. 35 (1983) 345–367. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. M. Snowling, Phonemic deficits in developmental dyslexia, Psychol. Res. 43(2) (1981) 219–234. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. F. R. Vellutino, Dyslexia: Theory and research, Appl. Psycholinguist. 4(1) (1983) 69–79. Web of ScienceGoogle Scholar
    • 35. P. Tallal, S. Miller and R. Fitch, Neurobiological basis of speech: A case for the preeminence of temporal processing, Ann. N. Y. Acad. Sci. 682 (1993) 27–47. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. W. Serniclaes, L. Sprenger-Charolles, R. Carr and J. Demonet, Perceptual discrimination of speech sounds in developmental dyslexia, J. Speech Lang. Hear. Res. 44 (2001) 384–399. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. D. Swan and U. Goswami, Phonological awareness deficits in developmental dyslexia and the phonological representations hypothesis, J. Exp. Child Psychol. 66(1) (1997) 18–41. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. U. Goswami, Speech rhythm and language acquisition an amplitude modulation phase hierarchy perspective, Ann. N. Y. Acad. Sci. 1453 (2019) 67–78. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. U. Goswami, A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia, Lang. Linguist. Compass 13(5) (2019) e12328. Crossref, Web of ScienceGoogle Scholar
    • 40. K. Lilli, S. Yury, E. Partanen and T. Kujala, Impaired neural mechanism for online novel word acquisition in dyslexic children, Sci. Rep. 8(8) (2018) 12779. Medline, Web of ScienceGoogle Scholar
    • 41. U. Goswami, Temporal sampling framework for developmental dyslexia, Trends Cogn. Sci. 15(1) (2011) 3–10. Crossref, Medline, Web of ScienceGoogle Scholar
    • 42. U. Goswami, A neural basis for phonological awareness? An oscillatory temporal-sampling perspective, Curr. Dir. Psychol. Sci. 27 (2017) 56–63. Crossref, Web of ScienceGoogle Scholar
    • 43. S. Flanagan and U. Goswami, The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks, J. Acoust. Soc. Am. 143 (2018) 1366–1375. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. G. M. Di Liberto, V. Peter, M. Kalashnikova, U. Goswami, D. Burnham and E. C. Lalor, Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia, NeuroImage 175(1) (2018) 70–79. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. J. Boddy, Evoked potentials and the dynamics of language processing, Biol. Psychol. 13 (1981) 125–140. Crossref, Medline, Web of ScienceGoogle Scholar
    • 46. A. L. Benton and J. W. Bird, The EEG and reading disability, Am. J. Orthopsychiatry 33(3) (1963) 529–531. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. A. J. Power, L. J. Colling, N. Mead, L. Barnes and U. Goswami, Neural encoding of the speech envelope by children with developmental dyslexia, Brain Lang. 160 (2016) 1–10. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. S. Cutini, D. Szũcs, N. Mead, M. Huss and U. Goswami, Atypical right hemisphere response to slow temporal modulations in children with developmental dyslexia, NeuroImage 143 (2016) 40–49. Crossref, Medline, Web of ScienceGoogle Scholar
    • 49. A. De Vos, S. Vanvooren, J. Vanderauwera, P. Ghesquire and J. Wouters, A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia, Cortex 93 (2017) 206–219. Crossref, Medline, Web of ScienceGoogle Scholar
    • 50. N. Molinaro, M. Lizarazu, M. Lallier, M. Bourguignon and M. Carreiras, Out-of-synchrony speech entrainment in developmental dyslexia, Hum. Brain Mapp. 37 (2016) 2767–2783. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. M. Jimenez-Bravo, V. Marrero and A. Benítez-Burraco, An oscillopathic approach to developmental dyslexia: From genes to speech processing, Behav. Brain Res. 329 (2017) 84–95. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. A. De Vos, S. Vanvooren, J. Vanderauwera, P. Ghesquire and J. Wouters, Atypical neural synchronization to speech envelope modulations in dyslexia, Brain Lang. 164 (2017) 106–117. Crossref, Medline, Web of ScienceGoogle Scholar
    • 53. A. Friederici, The brain basis of language processing: From structure to function, Physiol. Rev. 91 (2011) 1357–1392. Crossref, Medline, Web of ScienceGoogle Scholar
    • 54. B. Horwitz and A. Braun, Brain network interactions in auditory, visual and linguistic processing, Brain Lang. 89 (2004) 377–384. Crossref, Medline, Web of ScienceGoogle Scholar
    • 55. R. Li and J. C. Principe, Blinking artifact removal in cognitive EEG data using ICA, in Proc. 2006 Int. Conf. IEEE Engineering in Medicine and Biology Society (2006), pp. 5273–5276. CrossrefGoogle Scholar
    • 56. A. Delorme and S. Makeig, EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis, J. Neurosci. Methods 134(1) (2004) 9–21. Crossref, Medline, Web of ScienceGoogle Scholar
    • 57. R. W. Wang, Y.-C. Chen, I.-N. Liu and S.-W. Chuang, Temporal and spectral EEG dynamics can be indicators of stealth placement, Sci. Rep. 8 (2018) 1–17. Medline, Web of ScienceGoogle Scholar
    • 58. F. Riaz, A. Hassan, S. Rehman, I. K. Niazi and K. Dremstrup, EMD-based temporal and spectral features for the classification of EEG signals using supervised learning, IEEE Trans. Neural Syst. Rehabil. Eng. 24 (2016) 28–35. Crossref, Medline, Web of ScienceGoogle Scholar
    • 59. S. M. S. Alam and M. I. H. Bhuiyan, Detection of seizure and epilepsy using higher order statistics in the EMD domain, IEEE J. Biomed. Health Inf. 17 (2013) 312–318. Crossref, Medline, Web of ScienceGoogle Scholar
    • 60. D. Thomson, Spectrum estimation and harmonic analysis, Proc. IEEE 70 (1982) 1055–1096. Crossref, Web of ScienceGoogle Scholar
    • 61. Z. Sankari, H. Adeli and A. Adeli, Wavelet coherence model for diagnosis of Alzheimer disease, Clin. EEG Neurosci. 43(3) (2012) 268–278. Crossref, Medline, Web of ScienceGoogle Scholar
    • 62. P. Welch, The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms, IEEE Trans. Audio Electroacoust. 15 (1967) 70–73. Crossref, Web of ScienceGoogle Scholar
    • 63. D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications (Cambridge University Press, 1993). CrossrefGoogle Scholar
    • 64. T. Higuchi, Approach to an irregular time series on the basis of the fractal theory, Physica D 31(2) (1988) 277–283. Crossref, Web of ScienceGoogle Scholar
    • 65. P. Castiglioni, What is wrong in Katz’s method? Comments on: “A note on fractal dimensions of biomedical waveforms”, Comput. Biol. Med. 40 (2010) 950–952. Crossref, Medline, Web of ScienceGoogle Scholar
    • 66. A. Eke, P. Herman, L. Kocsis and L. Kozk, Fractal characterization of complexity in temporal physiological signal, Physiol. Meas. 23 (2002) R1–R38. Crossref, Medline, Web of ScienceGoogle Scholar
    • 67. M. Ahmadlou, H. Adeli and A. Adeli, Fractality and a wavelet-chaos-neural network methodology for EEG-based diagnosis of autistic spectrum disorder, J. Clin. Neurophysiol. 27 (2010) 328–333. Crossref, Medline, Web of ScienceGoogle Scholar
    • 68. M. Ahmadlou, H. Adeli and A. Adeli, Fractality and a wavelet-chaos-methodology for EEG-based diagnosis of Alzheimer disease, Alzheimer Dis. Assoc. Disord. 25 (2010) 85–92. Crossref, Web of ScienceGoogle Scholar
    • 69. M. Ahmadlou and H. Adeli, Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems, Physica D 241(4) (2012) 326–332. Crossref, Web of ScienceGoogle Scholar
    • 70. M. Ahmadlou, H. Adeli and A. Adeli, Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder, Physica A 391(20) (2012) 4720–4726. Crossref, Web of ScienceGoogle Scholar
    • 71. M. Ahmadlou, H. Adeli and A. Adeli, Fractality analysis of frontal brain in major depressive disorder, Int. J. Psychophysiol. 85 (2012) 206–211. Crossref, Medline, Web of ScienceGoogle Scholar
    • 72. S. Spasic, A. Kalauzi, G. Grbic, L. Martac and M. Culic, Fractal analysis of rat brain activity after injury, Med. Biol. Eng. Comput. 43 (2005) 345–348. Crossref, Medline, Web of ScienceGoogle Scholar
    • 73. M. Ahmadlou, H. Adeli and A. Adeli, New diagnostic EEG markers of the Alzheimer’s disease using visibility graph, J. Neural Transm. (Vienna) 117 (2010) 1099–1109. Crossref, Medline, Web of ScienceGoogle Scholar
    • 74. J. del Etoile and H. Adeli, Graph theory and brain connectivity in Alzheimer’s disease, The Neuroscientist 23(4) (2017) 616–626. Crossref, Medline, Web of ScienceGoogle Scholar
    • 75. Y. Rajamanickam, M. Murugappan, U. R. Acharya, H. Adeli, N. Mohamed Ibrahim and E. Mesquita, Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia, Behav. Brain Res. 298 (2015) 248–260. Medline, Web of ScienceGoogle Scholar
    • 76. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125(4) (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 77. M. Ahmadlou and H. Adeli, Complexity of weighted graph: A new technique to investigate structural complexity of brain activities with applications to aging and autism, Neurosci. Lett. 650 (2017) 103–108. Crossref, Medline, Web of ScienceGoogle Scholar
    • 78. M. Ahmadlou and H. Adeli, Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder, Clin. EEG Neurosci. 42 (2011) 6–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 79. F. J. Martinez-Murcia, A. Ortiz, R. Morales-Ortega, P. J. López, J. L. Luque, D. Castillo-Barnes, F. Segovia, I. A. Illan, J. Ortega, J. Ramirez and J. M. Gorriz, Periodogram connectivity of EEG signals for the detection of dyslexia, in IWINAC 2019: Understanding the Brain Function and Emotions, Lecture Notes in Computer Science, Vol. 11486 (Springer, Cham, 2019), pp. 350–359. CrossrefGoogle Scholar
    • 80. A. Ortiz, P. López, J. Luque, F. J. Martínez-Murcia, D. Aquino-Britez and J. Ortega, An anomaly detection approach for dyslexia diagnosis using EEG signals, in IWINAC 2019: Understanding the Brain Function and Emotions, Lecture Notes in Computer Science, Vol. 11486 (Springer, Cham, 2019), pp. 369–378. CrossrefGoogle Scholar
    • 81. P. A. Jaskowiak, R. Campello and I. Costa, On the selection of appropriate distances for gene expression data clustering, BMC Bioinforma. 15 (2014) S2. Crossref, Medline, Web of ScienceGoogle Scholar
    • 82. G. Lyon, J. Fletcher and M. Barnes, Learning Disabilities: From Identification to Intervention, 2nd edn., Child Psychopathology (Cambridge University Press, 2002). Google Scholar
    • 83. A. Ellis, The cognitive neuropsychology of developmental (and acquired) dyslexia: A critical survey, Cognit. Neuropsychol. 2 (1985) 169–205. CrossrefGoogle Scholar
    • 84. R. Morris, K. Stuebing, J. Fletcher, S. Shaywitz, G. Lyon, D. Shankweiler, L. Katz, D. Francis and B. Shaywitz, Subtypes of reading disability: Variability around a phonological core, J. Educ. Psychol. 90 (1998) 347–373. Crossref, Web of ScienceGoogle Scholar
    • 85. T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning (Springer, New York, 2001). CrossrefGoogle Scholar
    • 86. C. Sammut and G. I. Webb, Statistical Learning Theory (Springer, 2010). Google Scholar
    • 87. Q. Dai, A competitive ensemble pruning approach based on cross-validation technique, Knowl.-Based Syst. 37 (2013) 394–414. Crossref, Web of ScienceGoogle Scholar
    • 88. P. Tamboer, H. Vorst, S. Ghebreab and H. Scholte, Machine learning and dyslexia: Classification of individual structural neuroimaging scans of students with and without dyslexia, NeuroImage, Clin. 11 (2016) 508–514. Crossref, Medline, Web of ScienceGoogle Scholar
    • 89. S. I. Dimitriadis, P. G. Simos, J. Fletcher and A. C. Papanicolaou, Aberrant resting-state functional brain networks in dyslexia: Symbolic mutual information analysis of neuromagnetic signals, Int. J. Psychophysiol. 126 (2018) 20–29. Crossref, Medline, Web of ScienceGoogle Scholar
    • 90. M. Tan, L. Wang and I. W. Tsang, Learning sparse SVM for feature selection on very high dimensional datasets, in Proc. 27th Int. Conf. Machine Learning (2010), pp. 1047–1054. Google Scholar
    • 91. T. L. Richards and V. W. Berninger, Abnormal FMRI connectivity in children with dyslexia during a phoneme task: Before but not after treatment, J. Neurolinguist. 21(4) (2008) 294–304. Crossref, Medline, Web of ScienceGoogle Scholar
    • 92. L. Stanberry, T. Richards, V. Berninger, R. Nandy, E. Aylward, K. Maravilla, P. Stock and D. Cordes, Low-frequency signal changes reflect differences in functional connectivity between good readers and dyslexics during continuous phoneme mapping, Magn. Reson. Imaging 24 (2006) 217–229. Crossref, Medline, Web of ScienceGoogle Scholar
    • 93. T. Richards, E. Aylward, K. Field, A. Grimme, W. Raskind, A. Richards, W. Nagy, M. Eckert, C. Leonard, R. Abbott and V. Berninger, Converging evidence for triple word form theory in children with dyslexia, Dev. Neuropsychol. 30 (2006) 547–589. Crossref, Medline, Web of ScienceGoogle Scholar
    • 94. M. Eckert, C. Leonard, T. Richards, E. Aylward, J. Thomson and V. Berninger, Anatomical correlates of dyslexia: Frontal and cerebellar findings, Brain 126(3) (2003) 482–494. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!