World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Assisted Diagnosis of Parkinsonism Based on the Striatal Morphology

    https://doi.org/10.1142/S0129065719500114Cited by:30 (Source: Crossref)

    Parkinsonism is a clinical syndrome characterized by the progressive loss of striatal dopamine. Its diagnosis is usually corroborated by neuroimaging data such as DaTSCAN neuroimages that allow visualizing the possible dopamine deficiency. During the last decade, a number of computer systems have been proposed to automatically analyze DaTSCAN neuroimages, eliminating the subjectivity inherent to the visual examination of the data. In this work, we propose a computer system based on machine learning to separate Parkinsonian patients and control subjects using the size and shape of the striatal region, modeled from DaTSCAN data. First, an algorithm based on adaptative thresholding is used to parcel the striatum. This region is then divided into two according to the brain hemisphere division and characterized with 152 measures, extracted from the volume and its three possible 2-dimensional projections. Afterwards, the Bhattacharyya distance is used to discard the least discriminative measures and, finally, the neuroimage category is estimated by means of a Support Vector Machine classifier. This method was evaluated using a dataset with 189 DaTSCAN neuroimages, obtaining an accuracy rate over 94%. This rate outperforms those obtained by previous approaches that use the intensity of each striatal voxel as a feature.

    References

    • 1. D. Greenberg, M. Aminoff and R. Simon, Clinical Neurology, 8th Edition, 8th edn. (McGraw-Hill Professional, New York, 2012). Google Scholar
    • 2. J. Booij, G. Tissingh, G. J. Boer, J. D. Speelman, J. C. Stoof, A. G. Janssen, E. C. Wolters and E. A. van Royen, [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labeling in early and advanced Parkinson’s disease, J. Neurol. Neurosurg. Psychia 62 (1997) 133–140. Medline, Web of ScienceGoogle Scholar
    • 3. M. D. Martínez-Valle Torres, S. J. Ortega Lozano, M. J. Gómez Heredia, T. Amrani Raissouni, E. Ramos Moreno, P. Moya Espinosa and J. M. Jiménez-Hoyuela, Longitudinal evaluation using FP-CIT in patients with parkinsonism, Neurología (English Edition) 29 (2014) 327–333. Google Scholar
    • 4. C. Nanni, S. Fanti and D. Rubello, 18F-DOPA PET and PET/CT, J. Nucl. Med. 48 (2007) 1577–1579. Medline, Web of ScienceGoogle Scholar
    • 5. C. Scherfler, S. W. Scholz, E. Donnemiller, C. Decristoforo, M. Oberladstätter, N. Stefanova, E. Diederen, I. Virgolini, W. Poewe and G. K. Wenning, Evaluation of [123I]IBZM pinhole SPECT for the detection of striatal dopamine D2 receptor availability in rats, NeuroImage 24 (2005) 822–831. Medline, Web of ScienceGoogle Scholar
    • 6. G. Garraux, C. Phillips, J. Schrouff, A. Kreisler, C. Lemaire, C. Degueldre, C. Delcour, R. Hustinx, A. Luxen, A. Destée and E. Salmon, Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes, NeuroImage: Clinic. 2 (2013) 883–893. Medline, Web of ScienceGoogle Scholar
    • 7. H. Adeli and S. Ghosh-Dastidar, Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology, 1st edn. (CRC Press, Boca Raton, FL, 2010). Google Scholar
    • 8. G. Mirzaei, A. Adeli and H. Adeli, Imaging and machine learning techniques for diagnosis of Alzheimer’s disease, Rev. Neurosci. 27 (2016) 857–870. Medline, Web of ScienceGoogle Scholar
    • 9. D. J. Towey, P. G. Bain and K. S. Nijran, Automatic classification of 123I-FP-CIT (DaTSCAN) SPECT images, Nucl. Med. Commun. August 2011 32(8) (2011) 699–707. Google Scholar
    • 10. I. A. Illán, J. M. Górriz, J. Ramírez, F. Segovia, J. M. Jiménez-Hoyuela and S. J. O. Lozano, Automatic assistance to Parkinson’s disease diagnosis in DaTSCAN SPECT imaging, Med. Phys. 39 (2012) 5971–5980. Medline, Web of ScienceGoogle Scholar
    • 11. F. C. Morabito, M. Campolo, N. Mammone, M. Versaci, S. Franceschetti, F. Tagliavini, V. Sofia, D. Fatuzzo, A. Gambardella, A. Labate, L. Mumoli, G. G. Tripodi, S. Gasparini, V. Cianci, C. Sueri, E. Ferlazzo and U. Aguglia, Deep learning representation from electroencephalography of early-stage creutzfeldt-jakob disease and features for differentiation from rapidly progressive dementia, Int. J. Neur. Syst. 27 (2017) 1650039. Link, Web of ScienceGoogle Scholar
    • 12. L. Guo, Z. Wang, M. Cabrerizo and M. Adjouadi, A cross-correlated delay shift supervised learning method for spiking neurons with application to interictal spike detection in epilepsy, Int. J. Neur. Syst. 27 (2017) 1750002. Link, Web of ScienceGoogle Scholar
    • 13. S. Ghosh-Dastidar and H. Adeli, A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection, Neur. Network. 22 (2009) 1419–1431. Medline, Web of ScienceGoogle Scholar
    • 14. Y. Zhang, Y. Wang, J. Jin and X. Wang, Sparse bayesian learning for obtaining sparsity of EEG frequency bands based feature vectors in motor imagery classification, Int. J. Neur. Syst. 27 (2017) 1650032. Link, Web of ScienceGoogle Scholar
    • 15. N. Mammone, C. Ieracitano, H. Adeli, A. Bramanti and F. C. Morabito, Permutation Jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects, IEEE Trans. Neur. Networks Learn. Syst. 29(10) (2018) 1–14. Web of ScienceGoogle Scholar
    • 16. F. Segovia, J. M. Górriz, J. Ramírez, I. Álvarez, J. M. Jiménez-Hoyuela and S. J. Ortega, Improved parkinsonism diagnosis using a partial least squares based approach, Med. Phys. 39 (2012) 4395–4403. Medline, Web of ScienceGoogle Scholar
    • 17. A. Ortiz, J. Munilla, J. M. Górriz and J. Ramírez, Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease, Int. J. Neur. Syst. 26 (2016) 1650025. Link, Web of ScienceGoogle Scholar
    • 18. D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, I. Álvarez, M. López, F. Segovia and C. G. Puntonet, Two approaches to selecting set of voxels for the diagnosis of Alzheimer’s disease using brain SPECT images, Digit. Sign. Process. 21 (2011) 746–755. Web of ScienceGoogle Scholar
    • 19. F. Segovia, J. M. Górriz, J. Ramírez, D. Salas-Gonzalez, I. Álvarez, M. López and R. Chaves, A comparative study of feature extraction methods for the diagnosis of Alzheimer’s disease using the ADNI database, Neurocomput. 75 (2012) 64–71. Web of ScienceGoogle Scholar
    • 20. J. M. Górriz, F. Segovia, J. Ramírez, A. Lassl and D. Salas-Gonzalez, GMM based SPECT image classification for the diagnosis of Alzheimer’s disease, Appl. Soft Comput. 11 (2011) 2313–2325. Web of ScienceGoogle Scholar
    • 21. F. Segovia, J. Górriz, J. Ramírez, D. Salas-González and I. Álvarez, Early diagnosis of Alzheimer’s disease based on partial least squares and support vector machine, Expert Syst. Appl. 40 (2013) 677–683. Web of ScienceGoogle Scholar
    • 22. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, Proc. 14th International Joint Conf. Artificial Intelligence — Volume 2, IJCAI’95 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1995), pp. 1137–1143. Google Scholar
    • 23. S. Varma and R. Simon, Bias in error estimation when using cross-validation for model selection, BMC Bioinformatics 7 (2006) 91. Medline, Web of ScienceGoogle Scholar
    • 24. F. Segovia, J. M. Górriz, J. Ramírez, F. J. Martínez-Murcia, D. Castillo-Barnes, I. A. Illán, A. Ortiz and D. Salas-Gonzalez, Automatic separation of parkinsonian patients and control subjects based on the striatal morphology, Natural and Artificial Computation for Biomedicine and Neuroscience (Springer, Cham, La Coruña Spain Ponencia, 2017), pp. 345–352. Google Scholar
    • 25. D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, I. A. Illán, P. Padilla, F. J. Martínez-Murcia and E. W. Lang, Building a FP-CIT SPECT brain template using a posterization approach, Neuroinformat. 13 (2015) 391–402. Medline, Web of ScienceGoogle Scholar
    • 26. D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, I. A. Illán and E. W. Lang, Linear intensity normalization of FP-CIT SPECT brain images using the α-stable distribution, NeuroImage 65 (2013) 449–455. Medline, Web of ScienceGoogle Scholar
    • 27. A. Brahim, J. M. Górriz, J. Ramírez and L. Khedher, Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach, Appl. Soft Comput. 37 (2015) 234–244. Web of ScienceGoogle Scholar
    • 28. A. Brahim, J. Ramírez, J. M. Górriz, L. Khedher and D. Salas-Gonzalez, Comparison between different intensity normalization methods in 123I-Ioflupane imaging for the automatic detection of parkinsonism, Plos One 10(6) (2015) e0130274. Medline, Web of ScienceGoogle Scholar
    • 29. R. Djaldetti, I. Ziv and E. Melamed, The mystery of motor asymmetry in Parkinson’s disease, Lancet Neurol. 5 (2006) 796–802. Medline, Web of ScienceGoogle Scholar
    • 30. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Fourth Edition, 4th edn. (Academic Press, Amsterdam, 2008). Google Scholar
    • 31. K. Müller, S. Mika, G. Rätsch, K. Tsuda and B. Schölkopf, An introduction to kernel-based learning algorithms, IEEE Trans. Neural Networks 12 (2001) 181–201. Medline, Web of ScienceGoogle Scholar
    • 32. K. Friston, Chapter 02 — Statistical parametric mapping, Statistical Parametric Mapping, eds. K. Friston, J. Ashburner, S. Kiebel, T. Nichols and W. Penny (Academic Press, London, 2007), pp. 10–31. Google Scholar
    • 33. D. Glaser and K. Friston, Chapter 10 — Covariance components, Statistical Parametric Mapping, eds. K. Friston, J. Ashburner, S. Kiebel, T. Nichols and W. Penny (Academic Press, London, 2007), pp. 140–147. Google Scholar
    • 34. Y. Hochberg and A. C. Tamhane, Multiple Comparison Procedures, 1st edn. (Wiley, New York, 2009). Google Scholar
    • 35. J. R. Chumbley and K. J. Friston, False discovery rate revisited: FDR and topological inference using Gaussian random fields, NeuroImage 44 (2009) 62–70. Medline, Web of ScienceGoogle Scholar
    • 36. F. Pereira, T. Mitchell and M. Botvinick, Machine learning classifiers and fMRI: A tutorial overview, NeuroImage 45 (2009) S199–S209. Medline, Web of ScienceGoogle Scholar
    • 37. A. Antonini, K. L. Leenders, P. Vontobel, R. P. Maguire, J. Missimer, M. Psylla and I. Günther, Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease, Brain 120 (1997) 2187–2195. Medline, Web of ScienceGoogle Scholar
    • 38. B. Rana, A. Juneja, M. Saxena, S. Gudwani, S. Senthil Kumaran, R. K. Agrawal and M. Behari, Regions-of-interest based automated diagnosis of Parkinson’s disease using T1-weighted MRI, Expert Syst. Appl. 42 (2015) 4506–4516. Web of ScienceGoogle Scholar
    • 39. P. E. Kinahan and J. W. Fletcher, PET/CT Standardized Uptake Values (SUVs) in Clinical Practice and Assessing Response to Therapy, Seminars in Ultrasound, CT, and MR 31 (2010) 496–505. Medline, Web of ScienceGoogle Scholar
    • 40. D. Caragea, D. Cook and V. G. Honavar, Gaining insights into support vector machine pattern classifiers using projection-based tour methods, Proc. Seventh ACM SIGKDD International Conf. Knowledge Discovery and Data Mining, KDD ’01 (ACM, New York, NY, USA, 2001), pp. 251–256. Google Scholar
    • 41. R. Prashanth, S. D. Roy, S. Ghosh and P. K. Mandal, Shape features as biomarkers in early Parkinson’s disease, 2013 6th International IEEE/EMBS Conf. Neural Engineering (NER), 2013, San Diego, CA, USA, pp. 517–520. Google Scholar
    • 42. H. Choi, S. Ha, H. J. Im, S. H. Paek and D. S. Lee, Refining diagnosis of Parkinson’s disease with deep learning-based interpretation of dopamine transporter imaging, NeuroImage: Clinical 16 (2017) 586–594. Medline, Web of ScienceGoogle Scholar
    • 43. R. Yuvaraj, M. Murugappan, U. R. Acharya, H. Adeli, N. M. Ibrahim and E. Mesquita, Brain functional connectivity patterns for emotional state classification in Parkinson’s disease patients without dementia, Behavioral Brain Res. 298 (2016) 248–260. Medline, Web of ScienceGoogle Scholar
    • 44. L. Khedher, I. A. Illán, J. M. Górriz, J. Ramírez, A. Brahim and A. Meyer-Baese, Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer’s with visual support, Int. J. Neural Syst. 27 (2017) 1650050. Link, Web of ScienceGoogle Scholar
    • 45. N. J. Weerkamp, G. Tissingh, P. J. E. Poels, S. U. Zuidema, M. Munneke, R. T. C. M. Koopmans and B. R. Bloem, Diagnostic accuracy of Parkinson’s disease and atypical parkinsonism in nursing homes, Parkinsonism Related Disorders 20 (2014) 1157–1160. Medline, Web of ScienceGoogle Scholar
    • 46. C. La Fougère, G. Pöpperl, J. Levin, B. Wängler, G. Böning, C. Uebleis, P. Cumming, P. Bartenstein, K. Bötzel and K. Tatsch, The value of the dopamine D2/3 receptor ligand 18F-desmethoxyfallypride for the differentiation of idiopathic and nonidiopathic parkinsonian syndromes, J. Nucl. Med. 51 (2010) 581–587. Medline, Web of ScienceGoogle Scholar
    • 47. G. Sáez, J. Manuel, J. R. P. de Inestrosa, J. Suckling, I. A. Illàn, A. Ortiz, F. J. Martinez-Murcia, F. S. Román, D. S. Gonzalez and Y. S. Wang, Case-based statistical learning: A non-parametric implementation with a conditional-error rate SVM, IEEE Access 5 (9 de junio de 2017): 11468-78 https://doi.org/10.1109/ACCESS.2017.2714579. Google Scholar