World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Assessment of Statistically Significant Command-Following in Pediatric Patients with Disorders of Consciousness, Based on Visual, Auditory and Tactile Event-Related Potentials by:12 (Source: Crossref)

    Disorders of consciousness (DOC) are among the major challenges of contemporary medicine, mostly due to the high rates of misdiagnoses in clinical assessment, based on behavioral scales. This turns our attention to potentially objective neuroimaging methods. Paradigms based on electroencephalography (EEG) are most suited for bedside applications, but sensitive to artifacts. These problems are especially pronounced in pediatric patients.

    We present the first study on the assessment of pediatric DOC patients by means of command-following procedures and involving long-latency cognitive event-related potentials. To deal with the above mentioned challenges, we construct a specialized signal processing scheme including artifact correction and rejection, parametrization, classification and final assessment of the statistical significance. To compensate for the possible bias of the tests involved in the final diagnosis, we propose the Monte Carlo evaluation of the processing pipeline. To compensate for possible sensory impairments of DOC patients, for each subject we check command-following responses to the stimuli in the major modalities: visual, tactile, and audio (words and sounds).

    We test the scheme on 20 healthy volunteers and present results for 15 patients from a hospital for children with severe brain damage, in relation to their behavioral diagnosis on the Coma Recovery Scale-Revised (CRS-R).


    • 1. M.-A. Bruno, A. Vanhaudenhuyse, A. Thibaut, G. Moonen and S. Laureys, From unresponsive wakefulness to minimally conscious plus and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness, J. Neurol. 258 (2011) 1373–1384. Medline, ISIGoogle Scholar
    • 2. J. T. Giacino, S. Ashwal, N. Childs, R. Cranford, B. Jennett, D. I. Katz, J. P. Kelly, J. H. Rosenberg, J. Whyte, R. Zafonte et al., The minimally conscious state definition and diagnostic criteria, Neurology 58(3) (2002) 349–353. Medline, ISIGoogle Scholar
    • 3. J. T. Giacino, K. Kalmar and J. Whyte, The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility, Arch. Phys. Med. Rehabil. 85 (2004) 2020–2029. Medline, ISIGoogle Scholar
    • 4. R. T. Seel, M. Sherer, J. Whyte, D. I. Katz, J. T. Giacino, A. M. Rosenbaum, F. M. Hammond, K. Kalmar, T. L.-B. Pape, R. Zafonte, R. C. Biester, D. Kaelin, J. Kean and N. Zasler, Assessment scales for disorders of consciousness: Evidence-based recommendations for clinical practice and research, Arch. Phys. Med. Rehabil. 91(12) (2010) 1795–1813. Medline, ISIGoogle Scholar
    • 5. J. Stender, O. Gosseries, M.-A. Bruno, V. Charland-Verville, A. Vanhaudenhuyse, A. Demertzi, C. Chatelle, M. Thonnard, A. Thibaut, L. Heine, A. Soddu, M. Boly, C. Schnakers, A. Gjedde and S. Laureys, Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study, The Lancet 384(9942) (2014) 514–522. Medline, ISIGoogle Scholar
    • 6. B. Kotchoubey, Evoked and event-related potentials in disorders of consciousness: A quantitative review, Conscious Cogn. 54 (2017) 155–167. Medline, ISIGoogle Scholar
    • 7. J. D. Sitt, J.-R. King, I. El Karoui, B. Rohaut, F. Faugeras, A. Gramfort, L. Cohen, M. Sigman, S. Dehaene and L. Naccache, Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state, Brain 137(8) (2014) 2258–2270. Medline, ISIGoogle Scholar
    • 8. S. J. Mason and N. E. Graham, Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation, Q. J. R. Meteorol. Soc. 128(584) (2002) 2145–2166. ISIGoogle Scholar
    • 9. D. Cruse, S. Chennu, C. Chatelle, T. A. Bekinschtein, D. Fernandez-Espejo, J. D. Pickard, S. Laureys and A. M. Owen, Bedside detection of awareness in the vegetative state: A cohort study, The Lancet 378 (2011) 2088–2094. Medline, ISIGoogle Scholar
    • 10. A. M. Goldfine, J. C. Bardin, Q. Noirhomme, J. J. Fins, N. D. Schiff and J. D. Victor, Reanalysis of Bedside detection of awareness in the vegetative state: A cohort study, The Lancet 381 (2013) 289–291. Medline, ISIGoogle Scholar
    • 11. A. Kirschner, D. Cruse, S. Chennu, A. M. Owen and A. Hampshire, A P300-based cognitive assessment battery, Brain Behav. 5 (2015) e00336. Medline, ISIGoogle Scholar
    • 12. H. Klekowicz, U. Malinowska, A. Piotrowska, D. Wołyńczyk-Gmaj, S. Niemcewicz and P. Durka, On the robust parametric detection of EEG artifacts in polysomnographic recordings, Neuroinformatics 7(2) (2009) 147–160. Medline, ISIGoogle Scholar
    • 13. E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for Python (2001–), [accessed 2017-10-26, version 1.0.0]. Google Scholar
    • 14. A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen and M. S. Hmlinen, MNE software for processing MEG and EEG data, NeuroImage 86(Suppl C) (2014) 446–460. Medline, ISIGoogle Scholar
    • 15. A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen and M. Hmlinen, MEG and EEG data analysis with mne-python, Front. Neurosci. 7 (2013) 267. Medline, ISIGoogle Scholar
    • 16. E. Larson, A. Gramfort, D. A. Engemann, Jaeilepp, C. Brodbeck, M. Jas, T. L. Brooks, Jona Sassenhagen, M. Luessi, J.-R. King, R. Goj, M. Wronkiewicz, M. van Vliet, C. Holdgraf, Yousrabk, A. Leggitt, A. R. Dykstra, R. Trachel, Lorenzo Desantis, A. Panda, mbillingr, dgwakeman, M. Magnuski, D. Strohmeier, T. Linzen, H. Bharadwaj, E. Ruzich, alexandre barachant, cmoutard and C. Bailey, mne-tools/mne-python: v0.14 (March 2017). Google Scholar
    • 17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830. ISIGoogle Scholar
    • 18. D. Bamber, The area above the ordinal dominance graph and the area below the receiver operating characteristic graph, J. Math. Psychol. 12(4) (1975) 387–415. ISIGoogle Scholar
    • 19. E. Maris and R. Oostenveld, Nonparametric statistical testing of EEG-and MEG-data, J. Neurosci. Methods 164(1) (2007) 177–190. Medline, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!