World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Assessment of Statistically Significant Command-Following in Pediatric Patients with Disorders of Consciousness, Based on Visual, Auditory and Tactile Event-Related Potentials

    Disorders of consciousness (DOC) are among the major challenges of contemporary medicine, mostly due to the high rates of misdiagnoses in clinical assessment, based on behavioral scales. This turns our attention to potentially objective neuroimaging methods. Paradigms based on electroencephalography (EEG) are most suited for bedside applications, but sensitive to artifacts. These problems are especially pronounced in pediatric patients.

    We present the first study on the assessment of pediatric DOC patients by means of command-following procedures and involving long-latency cognitive event-related potentials. To deal with the above mentioned challenges, we construct a specialized signal processing scheme including artifact correction and rejection, parametrization, classification and final assessment of the statistical significance. To compensate for the possible bias of the tests involved in the final diagnosis, we propose the Monte Carlo evaluation of the processing pipeline. To compensate for possible sensory impairments of DOC patients, for each subject we check command-following responses to the stimuli in the major modalities: visual, tactile, and audio (words and sounds).

    We test the scheme on 20 healthy volunteers and present results for 15 patients from a hospital for children with severe brain damage, in relation to their behavioral diagnosis on the Coma Recovery Scale-Revised (CRS-R).

    References

    • 1. M.-A. Bruno, A. Vanhaudenhuyse, A. Thibaut, G. Moonen and S. Laureys, From unresponsive wakefulness to minimally conscious plus and functional locked-in syndromes: Recent advances in our understanding of disorders of consciousness, J. Neurol. 258 (2011) 1373–1384. Crossref, Medline, ISIGoogle Scholar
    • 2. J. T. Giacino, S. Ashwal, N. Childs, R. Cranford, B. Jennett, D. I. Katz, J. P. Kelly, J. H. Rosenberg, J. Whyte, R. Zafonte et al., The minimally conscious state definition and diagnostic criteria, Neurology 58(3) (2002) 349–353. Crossref, Medline, ISIGoogle Scholar
    • 3. J. T. Giacino, K. Kalmar and J. Whyte, The JFK coma recovery scale-revised: Measurement characteristics and diagnostic utility, Arch. Phys. Med. Rehabil. 85 (2004) 2020–2029. Crossref, Medline, ISIGoogle Scholar
    • 4. R. T. Seel, M. Sherer, J. Whyte, D. I. Katz, J. T. Giacino, A. M. Rosenbaum, F. M. Hammond, K. Kalmar, T. L.-B. Pape, R. Zafonte, R. C. Biester, D. Kaelin, J. Kean and N. Zasler, Assessment scales for disorders of consciousness: Evidence-based recommendations for clinical practice and research, Arch. Phys. Med. Rehabil. 91(12) (2010) 1795–1813. Crossref, MedlineGoogle Scholar
    • 5. J. Stender, O. Gosseries, M.-A. Bruno, V. Charland-Verville, A. Vanhaudenhuyse, A. Demertzi, C. Chatelle, M. Thonnard, A. Thibaut, L. Heine, A. Soddu, M. Boly, C. Schnakers, A. Gjedde and S. Laureys, Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: A clinical validation study, The Lancet 384(9942) (2014) 514–522. Crossref, MedlineGoogle Scholar
    • 6. B. Kotchoubey, Evoked and event-related potentials in disorders of consciousness: A quantitative review, Conscious Cogn. 54 (2017) 155–167. Crossref, MedlineGoogle Scholar
    • 7. J. D. Sitt, J.-R. King, I. El Karoui, B. Rohaut, F. Faugeras, A. Gramfort, L. Cohen, M. Sigman, S. Dehaene and L. Naccache, Large scale screening of neural signatures of consciousness in patients in a vegetative or minimally conscious state, Brain 137(8) (2014) 2258–2270. Crossref, MedlineGoogle Scholar
    • 8. S. J. Mason and N. E. Graham, Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical significance and interpretation, Q. J. R. Meteorol. Soc. 128(584) (2002) 2145–2166. Crossref, ISIGoogle Scholar
    • 9. D. Cruse, S. Chennu, C. Chatelle, T. A. Bekinschtein, D. Fernandez-Espejo, J. D. Pickard, S. Laureys and A. M. Owen, Bedside detection of awareness in the vegetative state: A cohort study, The Lancet 378 (2011) 2088–2094. Crossref, MedlineGoogle Scholar
    • 10. A. M. Goldfine, J. C. Bardin, Q. Noirhomme, J. J. Fins, N. D. Schiff and J. D. Victor, Reanalysis of Bedside detection of awareness in the vegetative state: A cohort study, The Lancet 381 (2013) 289–291. Crossref, MedlineGoogle Scholar
    • 11. A. Kirschner, D. Cruse, S. Chennu, A. M. Owen and A. Hampshire, A P300-based cognitive assessment battery, Brain Behav. 5 (2015) e00336. Crossref, MedlineGoogle Scholar
    • 12. H. Klekowicz, U. Malinowska, A. Piotrowska, D. Wołyńczyk-Gmaj, S. Niemcewicz and P. Durka, On the robust parametric detection of EEG artifacts in polysomnographic recordings, Neuroinformatics 7(2) (2009) 147–160. Crossref, MedlineGoogle Scholar
    • 13. E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools for Python (2001–), [accessed 2017-10-26, version 1.0.0]. Google Scholar
    • 14. A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen and M. S. Hmlinen, MNE software for processing MEG and EEG data, NeuroImage 86(Suppl C) (2014) 446–460. Crossref, MedlineGoogle Scholar
    • 15. A. Gramfort, M. Luessi, E. Larson, D. Engemann, D. Strohmeier, C. Brodbeck, R. Goj, M. Jas, T. Brooks, L. Parkkonen and M. Hmlinen, MEG and EEG data analysis with mne-python, Front. Neurosci. 7 (2013) 267. Crossref, MedlineGoogle Scholar
    • 16. E. Larson, A. Gramfort, D. A. Engemann, Jaeilepp, C. Brodbeck, M. Jas, T. L. Brooks, Jona Sassenhagen, M. Luessi, J.-R. King, R. Goj, M. Wronkiewicz, M. van Vliet, C. Holdgraf, Yousrabk, A. Leggitt, A. R. Dykstra, R. Trachel, Lorenzo Desantis, A. Panda, mbillingr, dgwakeman, M. Magnuski, D. Strohmeier, T. Linzen, H. Bharadwaj, E. Ruzich, alexandre barachant, cmoutard and C. Bailey, mne-tools/mne-python: v0.14 (March 2017). Google Scholar
    • 17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830. ISIGoogle Scholar
    • 18. D. Bamber, The area above the ordinal dominance graph and the area below the receiver operating characteristic graph, J. Math. Psychol. 12(4) (1975) 387–415. CrossrefGoogle Scholar
    • 19. E. Maris and R. Oostenveld, Nonparametric statistical testing of EEG-and MEG-data, J. Neurosci. Methods 164(1) (2007) 177–190. Crossref, Medline, ISIGoogle Scholar
    Published: 24 December 2018
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!