World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Lateral Inhibition Organizes Beta Attentional Modulation in the Primary Visual Cortex by:1 (Source: Crossref)

    We have previously shown that during top-down attentional modulation (stimulus expectation) correlations of the beta signals across the primary visual cortex were uniform, while during bottom-up attentional processing (visual stimulation) their values were heterogeneous. These different patterns of attentional beta modulation may be caused by feed-forward lateral inhibitory interactions in the visual cortex, activated solely during stimulus processing. To test this hypothesis, we developed a large-scale computational model of the cortical network. We first identified the parameter range needed to support beta rhythm generation, and next, simulated the different activity states corresponding to experimental paradigms. The model matched our experimental data in terms of spatial organization of beta correlations during different attentional states and provided a computational confirmation of the hypothesis that the paradigm-specific beta activation spatial maps depend on the lateral inhibitory mechanism. The model also generated testable predictions that cross-correlation values depend on the distance between the activated columns and on their spatial position with respect to the location of the sensory inputs from the thalamus.


    • 1. L. Leocani, C. Toro, P. Manganotti, P. Zhuang and M. Hallett, Event-related coherence and event-related desynchronization/synchronization in the 10Hz and 20Hz EEG during self-paced movements, Electroencephalogr. Clin. Neurophysiol. — Evoked Potentials 104 (1997) 199–206. MedlineGoogle Scholar
    • 2. M. Bekisz and A. Wróbel, 20Hz rhythm of activity in visual system of perceiving cat, Acta Neurobiol. Exp. 53 (1993) 175–182. MedlineGoogle Scholar
    • 3. T. J. Buschman and E. K. Miller, Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices, Science 315 (2007) 1860–1864. Medline, ISIGoogle Scholar
    • 4. Y. B. Saalmann, I. N. Pigarev and T. R. Vidyasagar, Neural mechanisms of visual attention: How top-down feedback highlights relevant locations, Science 316 (2007) 1612–1615. Medline, ISIGoogle Scholar
    • 5. C. A. Bosman, J. M. Schoffelen, N. Brunet, R. Oostenveld, A. M. Bastos, T. Womelsdorf, B. Rubehn, T. Stieglitz, P. De Weerd and P. Fries, Attentional stimulus selection through selective synchronization between monkey visual areas, Neuron 75 (2012) 875–888. Medline, ISIGoogle Scholar
    • 6. J. R. Iversen, B. H. Repp and A. D. Patel, Top-down control of rhythm perception modulates early auditory responses, Ann. N. Y. Acad. Sci. 1169 (2009) 58–73. Medline, ISIGoogle Scholar
    • 7. X.-J. Wang, Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev. 90 (2010) 1195–1268. Medline, ISIGoogle Scholar
    • 8. G. Pfurtscheller, A. Stancák and C. Neuper, Post-movement beta synchronization. A correlate of an idling motor area? Electroencephalogr. Clin. Neurophysiol. 98 (1996) 281–293. MedlineGoogle Scholar
    • 9. A. Pogosyan, L. D. Gaynor, A. Eusebio and P. Brown, Boosting cortical activity at beta-band frequencies slows movement in humans, Curr. Biol. 19 (2009) 1637–1641. Medline, ISIGoogle Scholar
    • 10. F. Lopes Da Silva, EEG: Origin and measurement, in EEG — fMRI: Physiological Basis, Technique, and Applications (Springer-Verlag, Berlin, 2010), pp. 19–38. Google Scholar
    • 11. S. Haegens, V. Nacher, A. Hernandez, R. Luna, O. Jensen and R. Romo, Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making, Proc. Natl. Acad. Sci. 108 (2011) 10708–10713. Medline, ISIGoogle Scholar
    • 12. T. H. Donner, M. Siegel, R. Oostenveld, P. Fries, M. Bauer and A. K. Engel, Population activity in the human dorsal pathway predicts the accuracy of visual motion detection, J. Neurophysiol. 98 (2007) 345–359. Medline, ISIGoogle Scholar
    • 13. B. Pesaran, M. J. Nelson and R. A. Andersen, Free choice activates a decision circuit between frontal and parietal cortex, Nature 453 (2008) 406–409. Medline, ISIGoogle Scholar
    • 14. S. Weiss and H. M. Mueller, Too many betas do not spoil the broth: The role of beta brain oscillations in language processing, Front. Psychol. 3 (2012) 201. Medline, ISIGoogle Scholar
    • 15. T. J. Buschman, E. L. Denovellis, C. Diogo, D. Bullock and E. K. Miller, Synchronous oscillatory neural ensembles for rules in the prefrontal cortex, Neuron 76 (2012) 838–846. Medline, ISIGoogle Scholar
    • 16. A. K. Engel and P. Fries, Beta-band oscillations-signalling the status quo? Curr. Opin. Neurobiol. 20 (2010) 156–165. Medline, ISIGoogle Scholar
    • 17. M. Bekisz and A. Wróbel, Attention-dependent coupling between beta activities recorded in the cat’s thalamic and cortical representations of the central visual field, Eur. J. Neurosci. 17 (2003) 421–426. Medline, ISIGoogle Scholar
    • 18. A. Wróbel, A. Ghazaryan, M. Bekisz, W. Bogdan and J. Kamiński, Two streams of attention dependent beta activity in the striate recipient zone of cat’s lateral posterior — pulvinar complex, J. Neurosci. 27 (2007) 2230–2240. Medline, ISIGoogle Scholar
    • 19. M. Bekisz, W. Bogdan, A. Ghazaryan, W. J. Waleszczyk, E. Kublik and A. Wróbel, The primary visual cortex is differentially modulated by stimulus-driven and top-down attention, PLoS ONE 11 (2016) e0145379. Medline, ISIGoogle Scholar
    • 20. W. S. Anderson, P. Kudela, J. Cho, G. K. Bergey and P. J. Franaszczuk, Studies of stimulus parameters for seizure disruption using neural network simulations, Biol. Cyb. 97 (2007) 173–194. Medline, ISIGoogle Scholar
    • 21. R. J. Douglas and K. A. C. Martin, Neuronal circuits of the neocortex, Annu. Rev. Neurosci. 27 (2004) 419–451. Medline, ISIGoogle Scholar
    • 22. H. Markram, The blue brain project, Nature Rev. Neurosci. 7 (2006) 153–160. Medline, ISIGoogle Scholar
    • 23. J. Heinzle, P. König and R. F. Salazar, Modulation of synchrony without changes in firing rates, Cogn. Neurodyn. 1 (2007) 225–235. Medline, ISIGoogle Scholar
    • 24. M. Bazhenov, N. F. Rulkov and I. Timofeev, Effect of synaptic connectivity on long-range synchronization of fast cortical oscillations, J. Neurophysiol. 100 (2008) 1562–1575. Medline, ISIGoogle Scholar
    • 25. A. Bacci, J. R. Huguenard and D. A. Prince, Modulation of neocortical interneurons: Extrinsic influences and exercises in self-control, Trends Neurosci. 28 (2005) 602–10. Medline, ISIGoogle Scholar
    • 26. M. W. Reimann, C. A. Anastassiou, R. Perin, S. L. Hill, H. Markram and C. Koch, A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents, Neuron 79 (2013) 375–90. Medline, ISIGoogle Scholar
    • 27. T. Binzegger, A Quantitative map of the circuit of cat primary visual cortex, J. Neurosci. 24 (2004) 8441–8453. Medline, ISIGoogle Scholar
    • 28. A. Stepanyants, L. M. Martinez, A. S. Ferecsko and Z. F. Kisvarday, The fractions of short- and long-range connections in the visual cortex, Proc. Natl. Acad. Sci. 106 (2009) 3555–3560. Medline, ISIGoogle Scholar
    • 29. P. C. Bush and T. J. Sejnowski, Models of cortical networks, in The Cortical Neuron (Oxford University Press, Inc., 2012). Google Scholar
    • 30. X.-J. Wang, J. Tegner, C. Constantinidis and P. S. Goldman-Rakic, Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory, Proc. Natl. Acad. Sci. 101 (2004) 1368–1373. Medline, ISIGoogle Scholar
    • 31. D. Ferster and S. Lindström, An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat, J. Physiol. 342 (1983) 181–215. Medline, ISIGoogle Scholar
    • 32. R. Llinás, I. Z. Steinberg and K. Walton, Relationship between presynaptic calcium current and postsynaptic potential in squid giant synapse, Biophys. J. 33 (1981) 323–351. Medline, ISIGoogle Scholar
    • 33. V. Braitenberg and A. Schüz, Anatomy of the Cortex (Springer-Verlag, Berlin, 1991). Google Scholar
    • 34. S. Leski, H. Lindén, T. Tetzlaff, K. H. Pettersen and G. T. Einevoll, Frequency dependence of signal power and spatial reach of the local field potential, PLoS Comput. Biol. 9 (2013) e1003137. Medline, ISIGoogle Scholar
    • 35. A. Destexhe, D. Contreras and M. Steriade, Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells, J. Neurophysiol. 79 (1998) 999–1016. Medline, ISIGoogle Scholar
    • 36. S. Grossberg and M. Versace, Spikes, synchrony, and attentive learning by laminar thalamocortical circuits, Brain Res. 1218 (2008) 278–312. Medline, ISIGoogle Scholar
    • 37. U. Mitzdorf, Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena, Physiol. Rev. 65 (1985) 37–100. Medline, ISIGoogle Scholar
    • 38. P. L. Nunez and R. Srinivasan, Electric Fields of the Brain: The Neurophysics of EEG (Oxford University Press, 2006). Google Scholar
    • 39. G. Buzsáki, C. A. Anastassiou and C. Koch, The origin of extracellular fields and currents-EEG, ECoG, LFP and spikes, Nature Rev. Neurosci. 13 (2012) 407–420. Medline, ISIGoogle Scholar
    • 40. M.-O. Gewaltig and M. Diesmann, NEST (NEural Simulation Tool), Scholarpedia 2 (2007) 1430. Google Scholar
    • 41. M. A. Whittington, R. D. Traub, N. Kopell, B. Ermentrout and E. H. Buhl, Inhibition-based rhythms: Experimental and mathematical observations on network dynamics, Int. J. Psychophysiol. 38 (2000) 315–336. Medline, ISIGoogle Scholar
    • 42. R. D. Traub, M. A. Whittington, E. H. Buhl, J. G. Jefferys and H. J. Faulkner, On the mechanism of the gamma - > beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation, J. Neurosci. 19 (1999) 1088–1105. Medline, ISIGoogle Scholar
    • 43. C. Borgers, S. Epstein and N. J. Kopell, Background gamma rhythmicity and attention in cortical local circuits: A computational study, Proc. Natl. Acad. Sci. 102 (2005) 7002–7007. Medline, ISIGoogle Scholar
    • 44. P. Tiesinga and T. J. Sejnowski, Cortical enlightenment: Are attentional gamma oscillations driven by ING or PING? Neuron 63 (2009) 727–732. Medline, ISIGoogle Scholar
    • 45. D. Vierling-Claassen, J. A. Cardin, C. I. Moore and S. R. Jones, Computational modeling of distinct neocortical oscillations driven by cell-type selective optogenetic drive: Separable resonant circuits controlled by low-threshold spiking and fast-spiking interneurons, Front. Hum. Neurosci. 4 (2010) 198. Medline, ISIGoogle Scholar
    • 46. R. Baddeley, L. F. Abbott, M. C. Booth, F. Sengpiel, T. Freeman, E. A. Wakeman and E. T. Rolls, Responses of neurons in primary and inferior temporal visual cortices to natural scenes, Proc. Biol. Sci. 264 (1997) 1775–1783. Medline, ISIGoogle Scholar
    • 47. W. S. Pritchard, The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram, Int. J. Neurosci. 66 (1992) 119–129. Medline, ISIGoogle Scholar
    • 48. W. J. Freeman, L. J. Rogers, M. D. Holmes and D. L. Silbergeld, Spatial spectral analysis of human electrocorticograms including the alpha and gamma bands, J. Neurosci. Methods 95 (2000) 111–121. Medline, ISIGoogle Scholar
    • 49. C. Bedard, H. Kroger and A. Destexhe, Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97 (2006) 1–4. The page range is 1-4. Also, the authors are:. ISIGoogle Scholar
    • 50. W. J. Freeman and J. Zhai, Simulated power spectral density (PSD) of background electrocorticogram (ECoG), Cogn. Neurodyn. 3 (2009) 97–103. Medline, ISIGoogle Scholar
    • 51. H. Lindén, K. H. Pettersen and G. T. Einevoll, Intrinsic dendritic filtering gives low-pass power spectra of local field potentials, J. Comput. Neurosci. 29 (2010) 423–444. Medline, ISIGoogle Scholar
    • 52. T. van Kerkoerle, M. W. Self, B. Dagnino, M. A. Gariel-Mathis, J. Poort, C. van der Togt and P. R. Roelfsema, Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex, Proc. Natl. Acad. Sci. 111 (2014) 14332–14341. Medline, ISIGoogle Scholar
    • 53. A. M. Bastos, J. Vezoli, C. A. Bosman, J. M. Schoffelen, R. Oostenveld, J. R. Dowdall, P. De Weerd, H. Kennedy and P. Fries, Visual areas exert feedforward and feedback influences through distinct frequency channels, Neuron 85 (2015) 390–401. Medline, ISIGoogle Scholar
    • 54. A. K. Roopun, M. A. Kramer, L. M. Carracedo, M. Kaiser, C. H. Davies, R. D. Traub, N. J. Kopell and M. A. Whittington, Period concatenation underlies interactions between gamma and beta rhythms in neocortex, Front. Cell. Neurosci. 2 (2008) 1. Medline, ISIGoogle Scholar
    • 55. W. H. Bosking, Y. Zhang, B. Schofield and D. Fitzpatrick, Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex, J. Neurosci. 17 (1997) 2112–2127. Medline, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!