World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The Relationship Between Ictal Multi-Unit Activity and the Electrocorticogram

    https://doi.org/10.1142/S0129065718500272Cited by:4 (Source: Crossref)

    During neocortical seizures in patients with epilepsy, microelectrode array recordings from the ictal core show a strong correlation between the fast, cellular spiking activities and the low-frequency component of the potential field, reflected in the electrocorticogram (ECoG). Here, we model the relationship between the cellular spike activity and this low-frequency component as the input and output signals of a linear time invariant system. Our approach is based on the observation that this relationship can be characterized by a so-called sinc function, the unit impulse response of an ideal (brick-wall) filter. Accordingly, using a brick-wall filter, we are able to convert ictal cellular spike inputs into an output that significantly correlates with the observed seizure activity in the ECoG (r=0.400.56,p<0.01), while ECoG recordings of subsequent seizures within patients also show significant, but lower, correlations (r=0.100.30,p<0.01). Furthermore, we can produce seizure-like output signals using synthetic spike trains with ictal properties. We propose a possible physiological mechanism to explain the observed properties associated with an ideal filter, and discuss the potential use of our approach for the evaluation of anticonvulsant strategies.

    References

    • 1. G. Buzsaki, Rhythms of the Brain (Oxford University Press, New York, 2006). Google Scholar
    • 2. P. Jiruska, M. de Curtis, J. G. R. Jefferys, C. A. Schevon, S. J. Schiff and K. Schindler, Synchronization and desynchronization in epilepsy: Controversies and hypotheses, J. Physiol. 591 (2013) 787–797. Medline, Web of ScienceGoogle Scholar
    • 3. E. H. Smith, J. Y. Liou, T. S. Davis, E. M. Merricks, S. S. Kellis, S. A. Weiss, B. Greger, P. A. House, G. M. McKhann, R. R. Goodman, R. G. Emerson, L. M. Bateman, A. J. Trevelyan and C. A. Schevon, The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures, Nat. Commun. 7 (2016) 11098. Medline, Web of ScienceGoogle Scholar
    • 4. C. A. Schevon, S. A. Weiss, G. McKhann, R. R. Goodman, R. Yuste, R. G. Emerson and A. J. Trevelyan, Evidence of an inhibitory restraint of seizure activity in humans, Nat. Commun. 3 (2012) 1060. Medline, Web of ScienceGoogle Scholar
    • 5. T. L. Eissa, K. Dijkstra, C. Brune, R. G. Emerson, M. J. A. M. van Putten, R. R. Goodman, G. M. McKhann, C. A. Schevon, W. van Drongelen and S. A. van Gils, Cross-scale effects of neural interactions during human neocortical seizure activity, Proc. Natl. Acad. Sci. 114(40) (2017) 10761–10766. Medline, Web of ScienceGoogle Scholar
    • 6. L. E. Martinet, G. Fiddyment, J. R. Madsen, E. N. Eskandar, W. Truccolo, U. T. Eden, S. S. Cash and M. A. Kramer, Human seizures couple across spatial scales through travelling wave dynamics, Nat. Commun. 8 (2017) 14896. Medline, Web of ScienceGoogle Scholar
    • 7. W. Truccolo, J. A. Donoghue, L. R. Hochberg, E. N. Eskandar, J. R. Madsen, W. S. Anderson, E. N. Brown, E. Halgren and S. S. Cash, Single-neuron dynamics in human focal epilepsy, Nat. Neurosci. 14 (2011) 635–643. Medline, Web of ScienceGoogle Scholar
    • 8. W. van Drongelen, Signal Processing for Neuroscientists: Introduction to the Analysis of Physiological Signals, 2nd edn. (Elsevier/Academic Press, London, UK, 2018). Google Scholar
    • 9. H. R. Wilson and J. D. Cowan, Excitatory and inhibitory interactions in localized populations of model neurons, Biophys. J. 12 (1972) 1–24. Medline, Web of ScienceGoogle Scholar
    • 10. S. A. Weiss, G. P. Banks, G. M. McKhann, R. R. Goodman, R. G. Emerson, A. J. Trevelyan and C. A. Schevon, Ictal high frequency oscillations distinguish two types of seizure territories in humans, Brain 136 (2013) 3796–3808. Medline, Web of ScienceGoogle Scholar
    • 11. T. L. Eissa, A. K. Tryba, C. J. Marcuccilli, F. Ben-Mabrouk, E. H. Smith, S. M. Lew, R. R. Goodman, G. M. McKhann, D. M. Frim, L. L. Pesce, M. H. Kohrman, R. G. Emerson, C. A. Schevon and W. van Drongelen, Multiscale aspects of generation of high-gamma activity during seizures in human neocortex, eNeuro 3 (2016) ENEURO.0141-15.2016. MedlineGoogle Scholar
    • 12. H. R. Wilson and J. D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 13 (1973) 55–80. Medline, Web of ScienceGoogle Scholar
    • 13. H. G. Meijer, T. L. Eissa, B. Kiewiet, J. F. Neuman, C. A. Schevon, R. G. Emerson, R. R. Goodman, G. M. McKhann, C. J. Marcuccilli, A. K. Tryba, J. D. Cowan, S. A. van Gils and W. van Drongelen, Modeling focal epileptic activity in the Wilson–Cowan model with depolarization block, J. Math. Neurosci. 5 (2015) 7. Medline, Web of ScienceGoogle Scholar
    • 14. A. J. Trevelyan and C. A. Schevon, How inhibition influences seizure propagation, Neuropharmacology 69 (2013) 45–54. Medline, Web of ScienceGoogle Scholar
    • 15. A. J. Trevelyan, D. Sussillo, B. O. Watson and R. Yuste, Modular propagation of epileptiform activity: Evidence for an inhibitory veto in neocortex, J. Neurosci. 26 (2006) 12447–12455. Medline, Web of ScienceGoogle Scholar
    • 16. A. J. Trevelyan, D. Sussillo and R. Yuste, Feedforward inhibition contributes to the control of epileptiform propagation speed, J. Neurosci. 27 (2007) 3383–3387. Medline, Web of ScienceGoogle Scholar
    • 17. T. I. Netoff and S. J. Schiff, Decreased neuronal synchronization during experimental seizures, J. Neurosci. 22 (2002) 7297–7307. Medline, Web of ScienceGoogle Scholar
    • 18. G. Foffani, Y. G. Uzcategui, B. Gal and L. Menendez de la Prida, Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus, Neuron 55 (2007) 930–941. Medline, Web of ScienceGoogle Scholar
    • 19. J. M. Ibarz, G. Foffani, E. Cid, M. Inostroza and L. Menendez de la Prida, Emergent dynamics of fast ripples in the epileptic hippocampus, J. Neurosci. 30 (2010) 16249–16261. Medline, Web of ScienceGoogle Scholar
    • 20. E. B. Bromfield, J. E. Cavazos and J. I. Sirven, Basic mechanisms underlying seizures and epilepsy, in An Introduction to Epilepsy (Internet) (West Hartford (CT): American Epilepsy Society, 2006). Google Scholar
    • 21. D. J. Mogul and W. van Drongelen, Electrical control of epilepsy, Ann. Rev. Biomed. Eng. 16 (2014) 483–504. Medline, Web of ScienceGoogle Scholar
    • 22. E. B. Dalkilic, Neurostimulation devices used in treatment of epilepsy (2017). Google Scholar
    • 23. S. Carrette, P. Boon, M. Sprengers, R. Raedt and K. Vonck, Responsive neurostimulation in epilepsy, Expert Review of Neurotherapeutics 15 (2015) 1–10. Medline, Web of ScienceGoogle Scholar
    • 24. R. S. Fisher and A. L. Velasco, Electrical brain stimulation for epilepsy, Nat. Rev. Neurol. 10 (2014) 261–270. Medline, Web of ScienceGoogle Scholar
    • 25. W. S. Anderson, P. Kudela, J. Cho, G. K. Bergey and P. J. Franaszczuk, Studies of stimulus parameters for seizure disruption using neural network simulations, Biol. Cybern. 97 (2007) 173–194. Medline, Web of ScienceGoogle Scholar
    • 26. W. S. Anderson, P. Kudela, S. Weinberg, G. K. Bergey and P. J. Franaszczuk, Phase-dependent stimulation effects on bursting activity in a neural network cortical simulation, Epilepsy Research 84 (2009) 42–55. Medline, Web of ScienceGoogle Scholar
    • 27. M. M. Vindiola, J. M. Vettel, S. M. Gordon, P. J. Franaszczuk and K. McDowell, Applying EEG phase synchronization measures to non-linearly coupled neural mass models, J. Neurosci. Methods 226 (2014) 1–14. Medline, Web of ScienceGoogle Scholar
    • 28. B. Beverlin, J. Kakalios, D. Nykamp and T. I. Netoff, Dynamical changes in neurons during seizures determine tonic to clonic shift, J. Comput. Neurosci. 33 (2012) 41–51. Medline, Web of ScienceGoogle Scholar
    • 29. P. N. Taylor, Y. Wang, M. Goodfellow, J. Dauwels, F. Moeller, U. Stephani and G. Baier, A computational study of stimulus driven epileptic seizure abatement, PLoS ONE 9 (2014) e114316. Medline, Web of ScienceGoogle Scholar
    • 30. U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and H. Adeli, Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals, Comput. Biol. Med. (2017) pii: S0010-4825(17)30315-3. Web of ScienceGoogle Scholar
    • 31. S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection, IEEE Trans. Biomed. Eng. 55 (2008) 512–518. Medline, Web of ScienceGoogle Scholar
    • 32. A. Mohemmed, S. Schliebs, S. Matsuda and N. Kasabov, SPAN: Spike pattern association neuron for learning spatio-temporal spike patterns, Int. J. Neural Systems 22 (2012) 1250012. Link, Web of ScienceGoogle Scholar
    • 33. A. Vato, L. Bonzano, M. Chiappalone, S. Cicero, F. Morabito, A. Novellino and G. Stillo, Spike manager: A new tool for spontaneous and evoked neuronal networks activity characterization, Neurocomputing 58–60 (2004) 1153–1161. Web of ScienceGoogle Scholar
    • 34. N. Mammone, D. Labate, A. Lay-Ekuakille and F. C. Morabito, Analysis of absence seizure generation using EEG spatial-temporal regularity measures, Int. J. Neural Syst. 22 (2012) 1250024. Link, Web of ScienceGoogle Scholar
    • 35. J. Milton and P. Jung, Brain defibrillators: Synopsis, problems and future directions, in Epilepsy as a Dynamic Disease (Springer, Berlin-Heidelberg, 2003), pp. 341–352. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!