World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Deep Neural Architectures for Mapping Scalp to Intracranial EEG

    https://doi.org/10.1142/S0129065718500090Cited by:78 (Source: Crossref)

    Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and electroencephalogram (EEG) data is no exemption. Intracranial EEG (iEEG) data enhances the training of deep learning models of the human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG data often impedes the learning process of neural models, achieving substandard performance. Here, an ensemble deep learning architecture for nonlinearly mapping scalp to iEEG data is proposed. The proposed architecture exploits the information from a limited number of joint scalp-intracranial recording to establish a novel methodology for detecting the epileptic discharges from the sEEG of a general population of subjects. Statistical tests and qualitative analysis have revealed that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As a real-world clinical application, these pseudo-iEEGs are then used by a convolutional neural network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability of iEEG and the limitations of sEEG, we have achieved a classification accuracy of 68% an increase of 6% over the previously proposed linear regression mapping.

    References

    • 1. S. Sanei, Adaptive Processing of Brain Signals, 1st edn. (John Wiley and Sons, 2013). Google Scholar
    • 2. W. Y. Hsu, Continuous EEG signal analysis for asynchronous BCI application, Int. J. Neur. Syst. 21 (2011) 335–350. Link, Web of ScienceGoogle Scholar
    • 3. Q. Yuan, W. Zhou and S. Yuan, Epileptic EEG classification based on kernel sparse representation, Int. J. Neur. Syst. 24(4) (2014). Link, Web of ScienceGoogle Scholar
    • 4. U. R. Acharya, S. V. Sree and J. S. Suri, Automatic detection of epileptic EEG signals using higher order cumulant features, Int. J. Neur. Syst. 21 (2011) 403–414. Link, Web of ScienceGoogle Scholar
    • 5. S. Noachtar, C. Binnie, J. Ebersole, F. Mauguiere, A. Sakamoto and B. Westmoreland, A glossary of terms most commonly used by clinical electroencephalographers and proposal for the report form for the EEG findings. The International Federation of Clinical Neurophysiology, Electroencephalogr. Clin. Neurophysiol. Suppl. 52 (1999) 21–41. MedlineGoogle Scholar
    • 6. W. Wang, J. L. Collinger, M. Perez, E. C. Tyler-Kabara, L. G. Cohen, N. Birbaumer, S. W. Brose, A. B. Schwartz, M. L. Boninger and D. J. Weber, Neural interface technology for rehabilitation: Exploiting and promoting neuroplasticity, Phys. Med. Rehabil. Clin. North Amer. 21(1) (2010) 157–178. MedlineGoogle Scholar
    • 7. G. Alarcon, C. N. Guy, C. D. Binnie, S. R. Walker, R. D. Elwes and C. E. Polkey, Intracerebral propagation of interictal activity in partial epilepsy: Implications for source localisation, J. Neurol. Neurosurg. Psych. 57 (1991) 435–449. Web of ScienceGoogle Scholar
    • 8. N. Kissani, G. Alarcon, M. Dad, C. Binnie and C. Polkey, Sensitivity of recordings at sphenoidal electrode site for detecting seizure onset: Evidence from scalp, superficial and deep foramen ovale recordings, Clin. Neurophysiol. 112 (2001) 232–240. Medline, Web of ScienceGoogle Scholar
    • 9. S. S. Lodder and M. J. A. M. V. Putten, A self-adapting system for the automated detection of inter-ictal epileptiform discharges, PLoS ONE 9(1) (2014). Web of ScienceGoogle Scholar
    • 10. F. Grouiller, R. C. Thornton, K. Groening, L. Spinelli, J. S. Duncan, K. Schaller, M. Siniatchkin, L. Lemieux, M. Seeck, C. M. Michel et al., With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging, Brain 134(10) (2011) 2867–2886. Medline, Web of ScienceGoogle Scholar
    • 11. N. Gaspard, R. Alkawadri and P. Farooque, Automatic detection of prominent interictal spikes in intracranial EEG: Validation of an algorithm and relationsip to the seizure onset zone, J. Neurosci. Meth. 125 (2014) 1095–1103. Google Scholar
    • 12. R. Janca, P. Jezdik, R. Cmejla et al., Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and non-epileptic intracranial recordings, Brain topography 28(1) (2015) 172–183. Medline, Web of ScienceGoogle Scholar
    • 13. L. Spyrou, D. Martin-Lopez, A. Valentin, G. Alarcon and S. Sanei, Detection of intracranial signatures of interictal epileptiform discharges from concurrent scalp EEG, Int. J. Neur. Syst. 26 (04) 1650016. Link, Web of ScienceGoogle Scholar
    • 14. K. Kaur, J. Shih and D. Krusienski, Empirical models of scalp-EEG responses using non-concurrent intracranial responses, J. Neur. Eng. 11 (2014) 035012. Medline, Web of ScienceGoogle Scholar
    • 15. L. Spyrou and S. Sanei, Coupled dictionary learning for multimodal data: An application to concurrent intracranial and scalp eeg, in IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016), pp. 2349–2353. Google Scholar
    • 16. S. Ji, W. Xu, M. Yang and K. Yu, 3D convolutional neural networks for human action recognition, IEEE Trans. Pattern Anal. Mach. Intell. 35(1) (2013) 221–231. Medline, Web of ScienceGoogle Scholar
    • 17. G. Hinton and R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science Magazine 313 (2006) 504–507. Google Scholar
    • 18. A. Ortiz Garcia, J. Munilla, J. M. Gorriz and J. Ramirez, Ensembles of Deep Learning Architectures for the early diagnosis of Alzheimers Disease, Int. J. Neur. Syst. 26(7) (2016) 1650025. Link, Web of ScienceGoogle Scholar
    • 19. F. C. Morabito, M. Campolo, N. Mammone, M. Versaci, S. Franceschetti, F. Tagliavini, V. Sofia, D. Fatuzzo, A. Gambardella, A. Labate, L. Mumoli, G. G. Tripodi, S. Gasparini, V. Cianci, C. Sueri, E. Ferlazzo and U. Aguglia, Deep learning representation from electroencephalography of early-stage creutzfeldt–Jakob disease and features for differentiation from rapidly progressive dementia, Int. J. Neur. Syst. 27(2) (2017) 1650039. Link, Web of ScienceGoogle Scholar
    • 20. R. T. Schirrmeister, J. T. Springenberg and L. D. Fiederer, Deep learning with convolutional neural networks for brain mapping and decoding of movement-related information from the human EEG, (2017), arXiv.org/abs/1703.05051. Google Scholar
    • 21. H. Cecotti and A. Graser, Convolutional neural networks for P300 detection with application to brain-computer interfaces, IEEE Trans. Pattern Anal. Mach. Intell. 33(3) (2011) 433–445. Medline, Web of ScienceGoogle Scholar
    • 22. R. U. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan and H. Adeli, Deep convolutional neural network for the automated detection of seizure using EEG signals, Comput. Biol. Med. 92 (2018) 1–9. Medline, Web of ScienceGoogle Scholar
    • 23. A. Antoniades, L. Spyrou, C. C. Took and S. Sanei, Deep learning for epileptic intracranial EEG data, in 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP) (2016) 1–6. Google Scholar
    • 24. M. Koziarski and B. Cyganek, Image Recognition with Deep Neural Networks in Presence of Noise Dealing with and Taking Advantage of Distortions, Int. Comput-Aided Eng. 24(4) (2017) 337–350. Web of ScienceGoogle Scholar
    • 25. F. Agostinelli, M. R. Anderson and H. Lee, Adaptive multi-column deep neural networks with application to robust image denoising, in Proc. Advances Neural Information Processing Systems (2013) pp. 1493–1501. Google Scholar
    • 26. D. Ciresan, U. Meier and J. Schmidhuber, Multi-column deep neural networks for image classification, in Proc. IEEE Conf. CVPR (2012) pp. 3642–3649. Google Scholar
    • 27. P. L. Nunez, R. Srinivasan, A. F. Westdorp, R. S. Wijesinghe, D. M. Tucker, R. B. Silberstein and P. J. Cadusch, EEG coherency I: Statistics reference electrode volume conduction Laplacians cortical imaging and interpretation at multiple scales, Electroencephalogr. Clin. Neurophysiol. 103(5) (1997) 499–515. MedlineGoogle Scholar
    • 28. P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. A. Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion”, J. Machi. Learn. Res. 11 (2010) 3371–3408. Web of ScienceGoogle Scholar
    • 29. L. Panait and S. Luke, Cooperative multi-agent learning: the state of the art, Autonomous Agents and Multi-Agent Systems 11(3) (2005) 387–434. Web of ScienceGoogle Scholar
    • 30. J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley and Y. Bengio, Theano: A CPU and GPU Math Expression Compiler, in Proc. Python for Scientific Computing Conference (SciPy) (2010). Google Scholar
    • 31. U. R. Acharya, R. Yanti, J. W. Zheng, M. R. Krishnan, J. H. Tan, R. J. Martis and C. M. Lim, Automated diagnosis of epilepsy using CWT, HOS and texture parameters, Int. J. Neur. Syst. 23(3) (2013) 1–15. Link, Web of ScienceGoogle Scholar
    • 32. A. Bultan, A four-parameter atomic decomposition of chirplets, IEEE Trans. Signal Process. 47(3) (1999) 731–745. Web of ScienceGoogle Scholar
    • 33. Y. LeCun, L. Bottou, G. B. Orr, and K. R. Mller, Springer, Efficient backprop, Neural Networks: Tricks of the Trade (1998) 9–50. Google Scholar
    • 34. A. Antoniades, L. Spyrou, D. M. Lopez, A. Valentin, G. Alarcon, S. Sanei and C. C. Took, Detection of Interictal Discharges with Convolutional Neural Networks Using Discrete Ordered Multichannel Intracranial EEG, Trans. Neur. Syst. Rehabil. Eng. 25(12) (2017) 2285–2294. Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!