World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition

    https://doi.org/10.1142/S0129065717500095Cited by:56 (Source: Crossref)

    Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user’s intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was 98.1±4.9% for the neurologically intact subjects and 90.0±13.9% for the SCI subjects. The total lag of the system was approximately 250ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.

    References

    • 1. R. Song, K. Y. Tong, X. Hu and W. Zhou, Myoelectrically controlled wrist robot for stroke rehabilitation, J. Neuroeng. Rehabil. 10 (2013). Crossref, Web of ScienceGoogle Scholar
    • 2. B. Sheng, Y. Zhang, W. Meng, C. Deng and S. Xie, Bilateral robots for upper-limb stroke rehabilitation: State of the art and future prospects, Med. Eng. Phys. 38 (2016) 587–606. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. J. Zariffa, N. Kapadia, J. Kramer, P. Taylor, M. Alizadeh-Meghrazi, V. Zivanovic, U. Albisser, R. Willms, A. Townson, A. Curt, M. Popovic and J. Steeves, Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury, IEEE Trans. Neural Syst. Rehabil. Eng. 20 (2012) 50–341. Crossref, Web of ScienceGoogle Scholar
    • 4. B. L. Shields, J. A. Main, S. W. Peterson and A. M. Strauss, An anthropomorphic hand exoskeleton to prevent astronaut hand fatigue during extravehicular activities, IEEE Trans. Syst. Man Cybern. A Syst. Hum. 27 (1997) 73–668. Crossref, Web of ScienceGoogle Scholar
    • 5. C. N. Schabowsky, S. B. Godfrey, R. J. Holley and P. S. Lum, Development and pilot testing of HEXORR: Hand exoskeleton rehabilitation robot, J. Neuroeng. Rehabil. 7 (2010) 36. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. N. S. K. Ho, K. Y. Tong, X. L. Hu, K. L. Fung, X. J. Wei, W. Rong and E. A. Susanto, An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation, IEEE Int. Conf. Rehabil Robot (2011) 5975340, Zurich, Switzerland, June 2011. Google Scholar
    • 7. P. Heo, G. M. Gu, S. J. Lee, K. Rhee and J. Kim, Current hand exoskeleton technologies for rehabilitation and assistive engineering, Int. J. Precis. Eng. Manuf. 13 (2012) 24–807. Crossref, Web of ScienceGoogle Scholar
    • 8. R. Song, K. Y. Tong, X. L. Hu and L. Li, Assistive control system using continuous myoelectric signal in robot-aided arm training for patients after stroke, IEEE Trans. Neural Syst. Rehabil. Eng. 16 (2008) 371–379. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. R. P. Van Peppen, G. Kwakkel, S. Wood-Dauphinee, H. J. Hendriks, P. J. Van der Wees and J. Dekker, The impact of physical therapy on functional outcomes after stroke: What’s the evidence? Clin. Rehabil. 18 (2004) 833–862. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. P. S. Lum, C. G. Burgar, D. E. Kenney and H. F. Vander Loos, Quantification of force abnormalities during passive and active-assisted upper-limb reaching movements in post-stroke hemiparesis, IEEE Trans. Biomed. Eng. 46 (1999) 652–662. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. J. W. Krakauer, Motor learning: Its relevance to stroke recovery and neurorehabilitation, Curr. Opin. Neurol. 19 (2006) 84–90. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. X. L. Hu, K. Y. Tong, R. Song, X. J. Zheng and W. W. Leung, A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke, Neurorehabil. Neural Repair 23 (2009) 837–846. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. R. Merletti, A. Botter, C. Cescon, M. A. Minetto and T. M. Vieira, Advances in surface EMG: recent progress in clinical research applications, Crit. Rev. Biomed. Eng. 38 (2010) 347–379. Crossref, MedlineGoogle Scholar
    • 14. M. A. Oskoei and H. Hu, Myoelectric control systems-A survey, Biomed. Signal Process. Control 2 (2007) 275–294. Crossref, Web of ScienceGoogle Scholar
    • 15. Y. Liu, Y. Ning, S. Li, P. Zhou, W. Z. Rymer and Y. Zhang, Three-dimensional innervation zone imaging from multi-channel surface EMG recordings, Int. J. Neural Syst. 25 (2015) 1550024. Link, Web of ScienceGoogle Scholar
    • 16. X. L. Hu, K. Y. Tong, X. J. Wei, W. Rong, E. A. Susanto and S. K. Ho, The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot, J. Electromyogr. Kines. 23 (2013) 1065–1074. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. T. Lenzi, S. M. M. D. Rossi, N. Vitiello and M. C. Carrozza, Intention-based EMG control for powered exoskeletons, IEEE Trans. Biomed. Eng. 59 (2012) 2180–2190. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. P. Parker, K. Englehart and B. Hudgins, Myoelectric signal processing for control of powered limb prostheses, J. Electromyogr. Kinesiol. 16 (2006) 541–548. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. P. Zhou, M. M. Lowery, K. B. Englehart, H. Huang, G. Li, L. Hargrove, J. P. Dewald and T. A. Kuiken, Decoding a new neural machine interface for control of artificial limbs, J. Neurophysiol. 98 (2007) 2974–2982. Crossref, Medline, Web of ScienceGoogle Scholar
    • 20. T. A. Kuiken, G. Li, B. A. Lock, R. D. Lipschutz, L. A. Miller, K. A. Stubblefield and K. B. Englehart, Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms, J. Am. Med. Assoc. 301 (2009) 619–628. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. X. Zhang and P. Zhou, High-density myoelectric pattern recognition toward improved stroke rehabilitation, IEEE Trans. Biomed. Eng. 29 (2012) 1649–1657. Crossref, Web of ScienceGoogle Scholar
    • 22. J. Liu and P. Zhou, A novel myoelectric pattern recognition strategy for hand function restoration after incomplete cervical spinal cord injury, IEEE Trans. Neural Syst. Rehabil. Eng. 21 (2013) 96–103. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. J. Liu, X. Li, C. Marciniak, W. Z. Rymer and P. Zhou, Extraction of neural control commands using myoelectric pattern recognition: A novel application in adults with cerebral palsy, Int. J. Neural Syst. 24 (2014) 1450022. Link, Web of ScienceGoogle Scholar
    • 24. J. Liu, X. Li, G. Li and P. Zhou, EMG feature assessment for myoelectric pattern recognition and channel selection: A study with incomplete spinal cord injury, Med. Eng. Phys. 36 (2014) 975–980. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. Y. Li, X. Chen, X. Zhang and P. Zhou, Several practical issues toward implementing myoelectric pattern recognition for stroke rehabilitation, Med. Eng. Phys. 36 (2014) 754–760. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. W. Rong, K. T. Tong, X. L. Hu and S. K. Ho, Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke, Disabil. Rehabil. Assist. Technol. 10 (2015) 149–159. Crossref, MedlineGoogle Scholar
    • 27. K. Y. Tong, S. K. Ho, P. K. Pang, X. L. Hu, W. K. Tam, K. L. Fung, X. J. Wei, P. N. Chen, and M. Chen, An intention driven hand functions task training robotic system, Conf. Proc. IEEE Eng. Med. Biol. Soc. (2010), pp. 3406–3409. Google Scholar
    • 28. Y. Huang, K. B. Englehart, B. Hudgins and A. D. Chan, A Gaussian mixture model based classification scheme for myoelectric control of powered upper limb prostheses, IEEE Trans. Biomed. Eng. 52 (2005) 1801–1811. Crossref, Medline, Web of ScienceGoogle Scholar
    • 29. K. Englehart and B. Hudgins, A robust, real-time control scheme for multifunction myoelectric control, IEEE Trans. Biomed. Eng. 50 (2003) 848–854. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. A. Suberbiola, E. Zulueta, J. M. Lopez-Guede, I. Etxeberria-Agiriano and M. Graña, Arm orthosis/prosthesis movement control based on surface EMG signal extraction, Int. J. Neural Syst. 25 (2015) 1550009. Link, Web of ScienceGoogle Scholar
    • 31. Z. Lu, X. Chen, Q. Li, X. Zhang and P. Zhou, A hand gesture recognition framework and wearable gesture-based interaction prototype for mobile devices, IEEE Trans. Hum. Mach. Syst. 44 (2014) 293–299. Crossref, Web of ScienceGoogle Scholar
    • 32. D. Leonardis, M. Barsotti, C. Loconsole, M. Solazzi, M. Troncossi, C. Mazzotti, V.P. Castelli, C. Procopio, G. Lamola, C. Chisari, M. Bergamasco and A. Frisoli, An EMG-controlled robotic hand exoskeleton for bilateral rehabilitation, IEEE Trans. Haptics 8 (2015) 140–151. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. Z. O. Khokhar, Z. G. Xiao and C. Menon, Surface EMG pattern recognition for real-time control of a wrist exoskeleton, BioMed. Eng. Online 9 (2010) 41. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. M. Ortiz-Catalan, B. Håkansson and R. Brånemark, Real-time and simultaneous control of artificial limbs based on pattern recognition algorithms, IEEE Trans. Neural Syst. Rehabil. Eng. 22 (2014) 756–764. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. C. K. Thomas, R. Bakels, C. S. Klein and I. Zijdewind, Human spinal cord injury: Motor unit properties and behaviour, Acta Physiol. (Oxf) 210 (2014) 5–19. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. J. M. Gracies, Pathophysiology of spastic paresis II: Emergence of muscle overactivity, Muscle Nerve 31 (2005) 552–571. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. I. Zijdewind and C. K. Thomas, Firing patterns of spontaneously active motor units in spinal cord-injured subjects, J. Physiol. 590 (2012) 1683–1697. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. X. Zhang and P. Zhou, Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes, J. Electromyogr. Kinesiol. 22 (2012) 901–907. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. J. Liu, D. Ying and P. Zhou, Wiener filtering of surface EMG with a priori SNR estimation toward myoelectric control for neurological injury patients, Med. Eng. Phys. 36 (2014) 5–1711. Crossref, Web of ScienceGoogle Scholar
    • 40. J. Liu, D. Ying, W. Z. Rymer and P. Zhou, Subspace based adaptive denoising of surface EMG from neurological injury patients, J. Neural Eng. 11 (2014) 056025. Crossref, Medline, Web of ScienceGoogle Scholar
    • 41. J. Liu, D. Ying, W. Z. Rymer and P. Zhou, Robust muscle activity onset detection using an unsupervised electromyogram learning framework, PLoS ONE 10 (2015) e0127990. Crossref, Medline, Web of ScienceGoogle Scholar
    • 42. X. Zhang, Y. Li, X. Chen, G. Li, W. Z. Rymer and P. Zhou, The effect of involuntary motor activity on myoelectric pattern recognition: A case study with chronic stroke patients, J. Neural Eng. 10 (2013) 046015. Crossref, Medline, Web of ScienceGoogle Scholar
    • 43. X. Chen and Z. J. Wang, Pattern recognition of number gestures based on a wireless surface EMG system, Biomed. Signal Process Control 8 (2013) 184–192. Crossref, Web of ScienceGoogle Scholar
    • 44. E. Castillo, D. Peteiro-Barral, B. G. Berdiñas and O. Fontenla-Romero, Distributed one-class support vector machine, Int. J. Neural Syst. 25 (2015) 1550029. Link, Web of ScienceGoogle Scholar
    • 45. C. Ockenfeld, R. K. Tong, E. A. Susanto, S. K. Ho, and X. Hu, Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: Stroke rehabilitation, IEEE Int. Conf. Rehabil. Robot. (ICORR) (2013) 6650392, Seattle, Washington, USA, June 2013. Google Scholar
    • 46. A. Burns, H. Adeli and J. A. Buford, Brain-computer interface after nervous system injury, The Neuroscientist 20 (2014) 639–651. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. A. Ortiz-Rosario and H. Adeli, Brain-computer interface technologies: From signal to action, Rev. NeuroSci. 24 (2013) 537–552. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. Z. Li, B. Wang, F. Sun, C. Yang, Q. Xie and W. Zhang, sEMG-based joint force control for an upper-limb power-assist exoskeleton robot, IEEE J. Biomed. Health Informatics 18 (2014) 1043–1050. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!