World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Epilepsy Mechanisms, Models, Prediction and Control; Research ArticlesNo Access

Emergence of Narrowband High Frequency Oscillations from Asynchronous, Uncoupled Neural Firing

    https://doi.org/10.1142/S0129065716500490Cited by:11 (Source: Crossref)

    Previous experimental studies have demonstrated the emergence of narrowband local field potential oscillations during epileptic seizures in which the underlying neural activity appears to be completely asynchronous. We derive a mathematical model explaining how this counterintuitive phenomenon may occur, showing that a population of independent, completely asynchronous neurons may produce narrowband oscillations if each neuron fires quasi-periodically, without requiring any intrinsic oscillatory cells or feedback inhibition. This quasi-periodicity can occur through cells with similar frequency–current (fI) curves receiving a similar, high amount of uncorrelated synaptic noise. Thus, this source of oscillatory behavior is distinct from the usual cases (pacemaker cells entraining a network, or oscillations being an inherent property of the network structure), as it requires no oscillatory drive nor any specific network or cellular properties other than cells that repetitively fire with continual stimulus. We also deduce bounds on the degree of variability in neural spike-timing which will permit the emergence of such oscillations, both for action potential- and postsynaptic potential-dominated LFPs. These results suggest that even an uncoupled network may generate collective rhythms, implying that the breakdown of inhibition and high synaptic input often observed during epileptic seizures may generate narrowband oscillations. We propose that this mechanism may explain why so many disparate epileptic and normal brain mechanisms can produce similar high frequency oscillations.

    References

    • 1. C. Alvarado-Rojas, K. Lehongre, J. Bagdasaryan, A. Bragin, R. Staba, J. Engel Jr, V. Navarro and M. Le Van Quyen, Single-unit activities during epileptic discharges in the human hippocampal formation, Front. Comput. Neurosci. 7 (2013) 142–148. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. W. Truccolo, O. J. Ahmed, M. T. Harrison, E. N. Eskandar, G. R. Cosgrove, J. R. Madsen, A. S. Blum, N. S. Potter, L. R. Hochberg and S. S. Cash, Neuronal ensemble synchrony during human focal seizures, J. Neurosci. 34(30) (2014) 9927–9944. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. N. Brunel and X.-J. Wang, What determines the frequency of fast network oscillations with irregular neural discharges? I. synaptic dynamics and excitation-inhibition balance, J. Neurophysiol. 90(1) (2003) 415–430. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. F. Moss, L. M. Ward and W. G. Sannita, Stochastic resonance and sensory information processing: A tutorial and review of application, Clin. Neurophysiol. 115(2) (2004) 267–281. Crossref, Medline, Web of ScienceGoogle Scholar
    • 5. W.-J. Rappel and A. Karma, Noise-induced coherence in neural networks, Phys. Rev. Lett. 77(15) (1996) 3256. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. B. Doiron, B. Lindner, A. Longtin, L. Maler and J. Bastian, Oscillatory activity in electrosensory neurons increases with the spatial correlation of the stochastic input stimulus, Phys. Rev. Lett. 93(4) (2004) 048101. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. J. Jirsch, E. Urrestarazu, P. LeVan, A. Olivier, F. Dubeau and J. Gotman, High-frequency oscillations during human focal seizures, Brain 129(6) (2006) 1593–1608. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. E. Urrestarazu, R. Chander, F. Dubeau and J. Gotman, Interictal high-frequency oscillations (100–500hz) in the intracerebral EEG of epileptic patients, Brain 130(9) (2007) 2354–2366. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. J. Cimbalnik, M. T. Kucewicz and G. Worrell, Interictal high-frequency oscillations in focal human epilepsy, Curr. Opin. Neurol. 29(2) (2016) 175–181. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. J. G. Jefferys, L. M. De La Prida, F. Wendling, A. Bragin, M. Avoli, I. Timofeev and F. H. L. Da Silva, Mechanisms of physiological and epileptic hfo generation, Prog. Neurobiol. 98(3) (2012) 250–264. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. G. Foffani, Y. G. Uzcategui, B. Gal and L. M. de la Prida, Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus, Neuron 55(6) (2007) 930–941. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. J. M. Ibarz, G. Foffani, E. Cid, M. Inostroza and L. M. de la Prida, Emergent dynamics of fast ripples in the epileptic hippocampus, J. Neurosci. 30(48) (2010) 16249–16261. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. A. Draguhn, R. Traub, D. Schmitz and J. Jefferys, Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro, Nature 394(6689) (1998) 189–192. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. J. E. Fox, M. Bikson and J. G. Jefferys, Tissue resistance changes and the profile of synchronized neuronal activity during ictal events in the low-calcium model of epilepsy, J. Neurophysiol. 92(1) (2004) 181–188. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. V. I. Dzhala and K. J. Staley, Mechanisms of fast ripples in the hippocampus, J. Neurosci. 24(40) (2004) 8896–8906. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. G. Buzsáki and F. L. da Silva, High frequency oscillations in the intact brain, Prog. Neurobiol. 98(3) (2012) 241–249. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. A. Ylinen, A. Bragin, Z. Nádasdy, G. Jandó, I. Szabo, A. Sik and G. Buzsaki, Sharp wave-associated high-frequency oscillation (200 hz) in the intact hippocampus: network and intracellular mechanisms, J. Neurosci. 15(1) (1995) 30–46. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. J. Engel Jr, A. Bragin, R. Staba and I. Mody, High-frequency oscillations: What is normal and what is not? Epilepsia 50(4) (2009) 598–604. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. M. A. van’t Klooster, N. E. van Klink, F. S. Leijten, R. Zelmann, T. A. Gebbink, P. H. Gosselaar, K. P. Braun, G. J. Huiskamp and M. Zijlmans, Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome, Neurology 85(2) (2015) 120–128. Crossref, Medline, Web of ScienceGoogle Scholar
    • 20. J. A. Blanco, M. Stead, A. Krieger, W. Stacey, D. Maus, E. Marsh, J. Viventi, K. H. Lee, R. Marsh, B. Litt et al., Data mining neocortical high-frequency oscillations in epilepsy and controls, Brain 134(10) (2011) 2948–2959. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. R. J. Staba, M. Stead and G. A. Worrell, Electrophysiological biomarkers of epilepsy, Neurotherapeutics 11(2) (2014) 334–346. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. J. Jacobs, R. Staba, E. Asano, H. Otsubo, J. Wu, M. Zijlmans, I. Mohamed, P. Kahane, F. Dubeau, V. Navarro et al., High-frequency oscillations (hfos) in clinical epilepsy, Prog. Neurobiol. 98(3) (2012) 302–315. Crossref, Medline, Web of ScienceGoogle Scholar
    • 23. W. C. Stacey, M. T. Lazarewicz and B. Litt, Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model, J. Neurophysiol. 102(4) (2009) 2342–2357. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. W. C. Stacey, A. Krieger and B. Litt, Network recruitment to coherent oscillations in a hippocampal computer model, J. Neurophysiol. 105(4) (2011) 1464–1481. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. C. G. Fink, S. Gliske, N. Catoni and W. C. Stacey, Network mechanisms generating abnormal and normal hippocampal high-frequency oscillations: A computational analysis, eNeuro 2(3) (2015) ENEURO–0024. Crossref, MedlineGoogle Scholar
    • 26. A. Bragin, S. K. Benassi, F. Kheiri and J. Engel Jr, Further evidence that pathologic high-frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus, Epilepsia 52(1) (2011) 45–52. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. I. Bojak and M. Breakspear, Neuroimaging, neural population models for, Encyclopedia of Computational Neuroscience (Springer, 2015), pp. 1919–1944. CrossrefGoogle Scholar
    • 28. B. Lindner, Superposition of many independent spike trains is generally not a poisson process, Phys. Rev. E 73(2) (2006) 022901. Crossref, Web of ScienceGoogle Scholar
    • 29. D. R. Cox, Renewal theory (Methuen London, 1962). Google Scholar
    • 30. W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University Press, 2002). CrossrefGoogle Scholar
    • 31. C. Alvarado-Rojas, G. Huberfeld, M. Baulac, S. Clemenceau, S. Charpier, R. Miles, L. M. Prida and M. Quyen, Different mechanisms of ripple-like oscillations in the human epileptic subiculum, Ann. Neurol. 77(2) (2015) 281–290. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. F. Grenier, I. Timofeev and M. Steriade, Neocortical very fast oscillations (ripples, 80–200 hz) during seizures: intracellular correlates, J. Neurophysiol. 89(2) (2003) 841–852. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. E. W. Schomburg, C. A. Anastassiou, G. Buzsáki and C. Koch, The spiking component of oscillatory extracellular potentials in the rat hippocampus, The J. Neurosci. 32(34) (2012) 11798–11811. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. M. W. Reimann, C. A. Anastassiou, R. Perin, S. L. Hill, H. Markram and C. Koch, A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents, Neuron 79(2) (2013) 375–390. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. M. Zijlmans, P. Jiruska, R. Zelmann, F. S. Leijten, J. G. Jefferys and J. Gotman, High-frequency oscillations as a new biomarker in epilepsy, Ann. Neurol. 71(2) (2012) 169–178. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. M. A. vant Klooster, F. S. Leijten, G. Huiskamp, H. E. Ronner, J. C. Baayen, P. C. van Rijen, M. J. Eijkemans, K. P. Braun, M. Zijlmans et al., High frequency oscillations in the intra-operative ecog to guide epilepsy surgery (the hfo trial): Study protocol for a randomized controlled trial, Trials 16(1) (2015) 422. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. L. Andrade-Valenca, F. Dubeau, F. Mari, R. Zelmann and J. Gotman, Interictal scalp fast oscillations as a marker of the seizure onset zone, Neurology 77(6) (2011) 524–531. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. C. Haegelen, P. Perucca, C.-E. Châtillon, L. Andrade-Valença, R. Zelmann, J. Jacobs, D. L. Collins, F. Dubeau, A. Olivier and J. Gotman, High-frequency oscillations, extent of surgical resection, and surgical outcome in drug-resistant focal epilepsy, Epilepsia 54(5) (2013) 848–857. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. G. A. Worrell, L. Parish, S. D. Cranstoun, R. Jonas, G. Baltuch and B. Litt, High-frequency oscillations and seizure generation in neocortical epilepsy, Brain 127(7) (2004) 1496–1506. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. G. A. Worrell, A. B. Gardner, S. M. Stead, S. Hu, S. Goerss, G. J. Cascino, F. B. Meyer, R. Marsh and B. Litt, High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings, Brain 131(4) (2008) 928–937. Crossref, Medline, Web of ScienceGoogle Scholar
    • 41. A. Pearce, D. Wulsin, J. A. Blanco, A. Krieger, B. Litt and W. C. Stacey, Temporal changes of neocortical high-frequency oscillations in epilepsy, J. Neurophysiol. 110(5) (2013) 1167–1179. Crossref, Medline, Web of ScienceGoogle Scholar
    • 42. W. Stacey, M. Le Van Quyen, F. Mormann and A. Schulze-Bonhage, What is the present-day eeg evidence for a preictal state? Epilepsy Res. 97(3) (2011) 243–251. Crossref, Medline, Web of ScienceGoogle Scholar
    • 43. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, New York, NY, 1984). Google Scholar
    • 44. A. D. Reyes, Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro, Nat. Neurosc. 6(6) (2003) 593–599. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. H. Câteau and A. D. Reyes, Relation between single neuron and population spiking statistics and effects on network activity, Phys. Rev. Lett. 96(5) (2006) 058101. Crossref, Medline, Web of ScienceGoogle Scholar
    • 46. G. Maimon and J. A. Assad, Beyond poisson: Increased spike-time regularity across primate parietal cortex, Neuron 62(3) (2009) 426–440. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. B. B. Averbeck, Poisson or not poisson: Differences in spike train statistics between parietal cortical areas, Neuron 62(3) (2009) 310–311. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. T. I. Netoff and S. J. Schiff, Decreased neuronal synchronization during experimental seizures, J. Neurosci. 22(16) (2002) 7297–7307. Crossref, Medline, Web of ScienceGoogle Scholar
    • 49. Y.-C. Lai, M. G. Frei, I. Osorio and L. Huang, Characterization of synchrony with applications to epileptic brain signals, Phys. Rev. Lett. 98(10) (2007) p. 108102. Crossref, Medline, Web of ScienceGoogle Scholar
    • 50. A. Destexhe, M. Rudolph and D. Paré, The high-conductance state of neocortical neurons in vivo, Nat. Rev. Neurosci. 4(9) (2003) 739–751. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!