World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A Structural Parametrization of the Brain Using Hidden Markov Models-Based Paths in Alzheimer’s Disease

    https://doi.org/10.1142/S0129065716500246Cited by:25 (Source: Crossref)

    The usage of biomedical imaging in the diagnosis of dementia is increasingly widespread. A number of works explore the possibilities of computational techniques and algorithms in what is called computed aided diagnosis. Our work presents an automatic parametrization of the brain structure by means of a path generation algorithm based on hidden Markov models (HMMs). The path is traced using information of intensity and spatial orientation in each node, adapting to the structure of the brain. Each path is itself a useful way to characterize the distribution of the tissue inside the magnetic resonance imaging (MRI) image by, for example, extracting the intensity levels at each node or generating statistical information of the tissue distribution. Additionally, a further processing consisting of a modification of the grey level co-occurrence matrix (GLCM) can be used to characterize the textural changes that occur throughout the path, yielding more meaningful values that could be associated to Alzheimer’s disease (AD), as well as providing a significant feature reduction. This methodology achieves moderate performance, up to 80.3% of accuracy using a single path in differential diagnosis involving Alzheimer-affected subjects versus controls belonging to the Alzheimer’s disease neuroimaging initiative (ADNI).

    References

    • 1. W. H. Organization et al., Dementia: A Public Health Priority (World Health Organization, 2012). Google Scholar
    • 2. G. Pérez, A. Conci, A. B. Moreno and J. A. Hernandez-Tamames, Rician noise attenuation in the wavelet packet transformed domain for brain MRI, Integr. Computer-Aided Eng. 21(2) (2014) 163–175. Crossref, Web of ScienceGoogle Scholar
    • 3. N. Gonçalves, J. Nikkilä and R. Vigário, Self-supervised mri tissue segmentation by discriminative clustering, Int. J. Neural Syst. 24 (2014) 1450004. Link, Web of ScienceGoogle Scholar
    • 4. F. C. Morabito, M. Campolo, D. Labate, G. Morabito, L. Bonanno, A. Bramanti, S. de Salvo, A. Marra and P. Bramanti, A longitudinal eeg study of alzheimer’s disease progression based on a complex network approach, Int. J. Neural. Syst. 25 (2015) 1550005. Link, Web of ScienceGoogle Scholar
    • 5. H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer’s disease and models of computation: Imaging, classification, and neural models, J. Alzheimers Dis. 7 (2005) 187–199; discussion 255–262. Crossref, Medline, Web of ScienceGoogle Scholar
    • 6. H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, Alzheimer’s disease: Models of computation and analysis of eegs, Clin. EEG Neurosci. 36 (2005) 131–140. Crossref, Medline, Web of ScienceGoogle Scholar
    • 7. H. Adeli, S. Ghosh-Dastidar and N. Dadmehr, A spatio-temporal wavelet-chaos methodology for eeg-based diagnosis of Alzheimer’s disease, Neurosci. Lett. 444 (2008) 190–194. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. H. Adeli and S. Ghosh-Dastidar, Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology (CRC Press, Taylor & Francis Group, Boca Raton, FL, 2010). CrossrefGoogle Scholar
    • 9. M. Ahmadlou, H. Adeli and A. Adeli, New diagnostic eeg markers of the Alzheimer’s disease using visibility graph, J. Neural Transm. (Vienna) 117 (2010) 1099–1109. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. M. Ahmadlou, H. Adeli and A. Adeli, Fractality and a wavelet-chaos-methodology for eeg-based diagnosis of Alzheimer disease, Alzheimer Disease & Associated Disorders 25(1) (2011) 85–92. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. Z. Sankari and H. Adeli, Probabilistic neural networks for diagnosis of Alzheimer’s disease using conventional and wavelet coherence, J. Neurosci. Meth. 197 (2011) 165–170. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. Z. Sankari, H. Adeli and A. Adeli, Intrahemispheric, interhemispheric, and distal eeg coherence in Alzheimer’s disease, Clin. Neurophysiol. 122 (2011) 897–906. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. Z. Sankari, H. Adeli and A. Adeli, Wavelet coherence model for diagnosis of Alzheimer disease, Clin. EEG Neurosci. 43 (2012) 268–278. Crossref, Medline, Web of ScienceGoogle Scholar
    • 14. P. Montejo, M. Montenegro, M. A. Fernandez and F. Maestu, Subjective memory complaints in the elderly: Prevalence and influence of temporal orientation, depression and quality of life in a population-based study in the city of madrid, Aging. Ment. Health 15 (2011) 85–96. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. K. Adamczuk, J. Schaeverbeke, H. M. J. Vanderstichele, J. Lilja, N. Nelissen, K. Van Laere, P. Dupont, K. Hilven, K. Poesen and R. Vandenberghe, Diagnostic value of cerebrospinal fluid a β ratios in preclinical Alzheimer’s disease, Alzheimers Res. Ther. 7(1) (2015) 75. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. M. L. Schroeter, T. Stein, N. Maslowski and J. Neumann, Neural correlates of Alzheimer’s disease and mild cognitive impairment: A systematic and quantitative meta-analysis involving 1351 patients, Neuroimage 47 (2009) 1196–1206. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. Y. Aksu, D. J. Miller, G. Kesidis, D. C. Bigler and Q. X. Yang, An mri-derived definition of mci-to-ad conversion for long-term, automatic prognosis of mci patients, PLoS One 6(10) (2011) e25074. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. S. Adaszewski, J. Dukart, F. Kherif, R. Frackowiak, B. Draganski and A. D. N. I. , How early can we predict Alzheimer’s disease using computational anatomy?, Neurobiol. Aging. 34 (2013) 2815–2826. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. P. Piaggi, D. Menicucci, C. Gentili, G. Handjaras, A. Gemignani and A. Landi, Singular spectrum analysis and adaptive filtering enhance the functional connectivity analysis of resting state fmri data, Int. J. Neural. Syst. 24 (2014) 1450010. Link, Web of ScienceGoogle Scholar
    • 20. K. Michalopoulos and N. Bourbakis, Combining eeg microstates with fmri structural features for modeling brain activity, Int. J. Neural Syst. 25 (2015) 1550041. Link, Web of ScienceGoogle Scholar
    • 21. S. Ferdowsi, S. Sanei and V. Abolghasemi, A predictive modeling approach to analyze data in eeg-fmri experiments, Int. J. Neural Syst. 25 (2015) 1440008. Link, Web of ScienceGoogle Scholar
    • 22. D. Chyzhyk, M. Graña, D. Öngür and A. K. Shinn, Discrimination of schizophrenia auditory hallucinators by machine learning of resting-state functional mri, Int. J. Neural Syst. 25 (2015) 1550007. Link, Web of ScienceGoogle Scholar
    • 23. A. Shiino, T. Watanabe, K. Maeda, E. Kotani, I. Akiguchi and M. Matsuda, Four subgroups of Alzheimer’s disease based on patterns of atrophy using VBM and a unique pattern for early onset disease, Neuroimage 33 (2006) 17–26. Crossref, Medline, Web of ScienceGoogle Scholar
    • 24. J. Ashburner, A fast diffeomorphic image registration algorithm, Neuroimage 38 (2007) 95–113. Crossref, Medline, Web of ScienceGoogle Scholar
    • 25. N. Ayache, Analyzing 3D images of the brain, Neuroimage 4(3) (1996) S34–S35. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. X. Han et al., Reliability of mri-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer, Neuroimage 32(1) (2006) 180–194. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. L. Ronan, R. Pienaar, G. Williams, E. Bullmore, T. J. Crow, N. Roberts, P. B. Jones, J. Suckling and P. C. Fletcher, Intrinsic curvature: A marker of milimeter-scale tangential cortico-cortical connectivity?, Int. J. Neural Syst. 21(5) (2011) 351–366. Link, Web of ScienceGoogle Scholar
    • 28. K. Friston, J. Ashburner, S. Kiebel, T. Nichols and W. Penny, Statistical Parametric Mapping: The Analysis of Functional Brain Images (Academic Press, Elsevier, London, UK, 2007). CrossrefGoogle Scholar
    • 29. M. Ahmadlou and H. Adeli, Functional community analysis of brain: A new approach for eeg-based investigation of the brain pathology, Neuroimage 58 (2011) 401–408. Crossref, Medline, Web of ScienceGoogle Scholar
    • 30. M. Ahmadlou, H. Adeli and A. Adeli, Graph theoretical analysis of organization of functional brain networks in adhd, Clin. EEG Neurosci. 43 (2012) 5–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. M. Ahmadlou, H. Adeli and A. Adeli, Spatiotemporal analysis of relative convergence of eegs reveals differences between brain dynamics of depressive women and men, Clin. EEG Neurosci. 44 (2013) 175–181. Crossref, Medline, Web of ScienceGoogle Scholar
    • 32. M. Ahmadlou, A. Adeli, R. Bajo and H. Adeli, Complexity of functional connectivity networks in mild cognitive impairment subjects during a working memory task, Clin. Neurophysiol. 125 (2014) 694–702. Crossref, Medline, Web of ScienceGoogle Scholar
    • 33. V. A. Kovalev, F. Kruggel, H.-J. Gertz and D. Y. von Cramon, Three-dimensional texture analysis of mri brain datasets, IEEE Trans. Med. Imag. 20(5) (2001) 424–433. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. D. Unay, A. Ekin, M. Cetin, R. Jasinschi and A. Ercil, Robustness of local binary patterns in brain mr image analysis, in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (August, 2007). Google Scholar
    • 35. U. Acharya, R. Yanti, J. Zheng, M. Krishnan, J. Tan, R. Martis and C. Lim, Automated diagnosis of epilepsy using cwt, hos and texture parameters, Int. J. Neural Syst. 23(3) (2013) 1350009. Link, Web of ScienceGoogle Scholar
    • 36. A. Ortiz, J. M. Górriz, J. Ramírez and F. Martínez-Murcia, Lvq-SVM based CAD tool applied to structural MRI for the diagnosis of the Alzheimer’s disease, Pattern Recogn. Lett. 34 (2013) 1725–1733. Crossref, Web of ScienceGoogle Scholar
    • 37. F. Martinez-Murcia et al., Parametrization of textural patterns in 123i-ioflupane imaging for the automatic detection of parkinsonism, Med. Phys. 41(1) (2014) 012502. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. U. Yoon, J.-M. Lee, K. Im, Y.-W. Shin, B. H. Cho, I. Y. Kim, J. S. Kwon and S. I. Kim, Pattern classification using principal components of cortical thickness and its discriminative pattern in schizophrenia, Neuroimage 34 (2007) 1405–1415. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. M. Ahmadlou and H. Adeli, Fuzzy synchronization likelihood with application to attention-deficit/hyperactivity disorder, Clin. EEG Neurosci. 42 (2011) 6–13. Crossref, Medline, Web of ScienceGoogle Scholar
    • 40. M. Ahmadlou and H. Adeli, Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems, Physica D: Nonlinear Phenomena 241(4) (2012) 326–332. Crossref, Web of ScienceGoogle Scholar
    • 41. M. Ahmadlou, H. Adeli and A. Adeli, Improved visibility graph fractality with application for the diagnosis of autism spectrum disorder, Physica A: Statist. Mech. Appl. 391(20) (2012) 4720–4726. Crossref, Web of ScienceGoogle Scholar
    • 42. M. Ahmadlou, H. Adeli and A. Adeli, Fractality analysis of frontal brain in major depressive disorder, Int. J. Psychophysiol. 85 (2012) 206–211. Crossref, Medline, Web of ScienceGoogle Scholar
    • 43. M. Ahmadlou, H. Adeli and A. Adeli, Fuzzy synchronization likelihood-wavelet methodology for diagnosis of autism spectrum disorder, J. Neurosci. Meth. 211 (2012) 203–209. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. I. A. Illan, J. M. Górriz, J. Ramírez and A. Meyer-Base, Spatial component analysis of mri data for alzheimer’s disease diagnosis: A bayesian network approach, Front. Comput. Neurosci. 8 (2014) 156. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. F. J. Martínez-Murcia, J. M. Górriz, J. Ramírez, I. Alvarez Illán, D. Salas-González, F. Segovia and A. D. N. I. , Projecting mri brain images for the detection of Alzheimer’s disease, Stud. Health Technol. Inform. 207 (2015) 225–233. Google Scholar
    • 46. F. Martinez-Murcia, A. Ortiz, J. M. Górriz, J. Ramírez and I. Illán, A volumetric radial lbp projection of mri brain images for the diagnosis of Alzheimer’s disease, Artificial Computation in Biology and Medicine (Springer, Berlin, Heidelberg, 2015), pp. 19–28. CrossrefGoogle Scholar
    • 47. R. Haralick, K. Shanmugam and I. Dinstein, Textural features for image classification, IEEE Transactions on Systems, Man Cybernet. 3(6) (1973) 610–621. Crossref, Web of ScienceGoogle Scholar
    • 48. M. Sikiö, K. K. Holli-Helenius, L. C. Harrison, P. Ryymin, H. Ruottinen, T. Saunamäki, H. J. Eskola, I. Elovaara and P. Dastidar, Mr image texture in parkinson’s disease: A longitudinal study, Acta Radiologica 56(1) (2015) 97–104. Crossref, Medline, Web of ScienceGoogle Scholar
    • 49. H. Chen, M. Goldberg, M. Magdon-Ismail and W. Wallace, Reverse engineering a social agent-based hidden markov model — visage, Int. J. Neural Syst. 18(6) (2008) 491–526. Link, Web of ScienceGoogle Scholar
    • 50. A. C. Evans, D. L. Collins, S. Mills, E. Brown, R. Kelly and T. M. Peters, 3D statistical neuroanatomical models from 305 mri volumes, in 1993 IEEE Conference Record. Nuclear Science Symposium and Medical Imaging Conference, 1993., IEEE1993, pp. 1813–1817. Google Scholar
    • 51. J.-C. Yen, F.-J. Chang and S. Chang, A new criterion for automatic multilevel thresholding, IEEE Trans. Image Process. 4 (1995) 370–378. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. L.-K. Soh and C. Tsatsoulis, Texture analysis of sar sea ice imagery using gray level co-occurrence matrices, IEEE Trans. Geosci. Remote Sens. 37(2) (1999) 780–795. Crossref, Web of ScienceGoogle Scholar
    • 53. D. A. Clausi, An analysis of co-occurrence texture statistics as a function of grey level quantization, Canad. J. Remote Sens. 28(1) (2002) 45–62. Crossref, Web of ScienceGoogle Scholar
    • 54. E. Luders, C. Gaser, L. Jancke and G. Schlaug, A voxel-based approach to gray matter asymmetries, Neuroimage 22 (2004) 656–664. Crossref, Medline, Web of ScienceGoogle Scholar
    • 55. C.-C. Chang and C.-J. Lin, Libsvm: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011) 1–27. Crossref, Web of ScienceGoogle Scholar
    • 56. R. Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, in Proc. Int. Joint Conf. AI (1995), pp. 1137–1145. Google Scholar
    • 57. M. Graña, M. Termenon, A. Savio, A. Gonzalez-Pinto, J. Echeveste, J. Pérez and A. Besga, Computer aided diagnosis system for alzheimer disease using brain diffusion tensor imaging features selected by pearson’s correlation, Neurosci. Lett. 502 (2011) 225–229. Crossref, Medline, Web of ScienceGoogle Scholar
    • 58. D. A. Medina and M. Gaviria, Diffusion tensor imaging investigations in alzheimer’s disease: The resurgence of white matter compromise in the cortical dysfunction of the aging brain, Neuropsychiatr. Dis. Treat 4 (2008) 737–742. Crossref, MedlineGoogle Scholar
    • 59. N. Tzourio-Mazoyer, B. Landeau, D. Papathanassiou, F. Crivello, O. Etard, N. Delcroix, B. Mazoyer and M. Joliot, Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain, Neuroimage 15 (2002) 273–289. Crossref, Medline, Web of ScienceGoogle Scholar
    • 60. B. Dubois et al., Research criteria for the diagnosis of Alzheimer’s disease: Revising the nincds–adrda criteria, The Lancet Neurol. 6 (2007) 734–746. Crossref, Medline, Web of ScienceGoogle Scholar
    • 61. D. Chan, N. C. Fox, R. I. Scahill, W. R. Crum, J. L. Whitwell, G. Leschziner, A. M. Rossor, J. M. Stevens, L. Cipolotti and M. N. Rossor, Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease, Ann. Neurol. 49(4) (2001) 433–442. Crossref, Medline, Web of ScienceGoogle Scholar
    • 62. J. C. Baron, G. Chételat, B. Desgranges, G. Perchey, B. Landeau, V. de la Sayette and F. Eustache, In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease, Neuroimage 14 (2001) 298–309. Crossref, Medline, Web of ScienceGoogle Scholar
    • 63. L. W. de Jong, K. van der Hiele, I. M. Veer, J. J. Houwing, R. G. J. Westendorp, E. L. E. M. Bollen, P. W. de Bruin, H. A. M. Middelkoop, M. A. van Buchem and J. van der Grond, Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: An MRI study, Brain 131 (2008) 3277–3285. Crossref, Medline, Web of ScienceGoogle Scholar
    • 64. J. Stoeckel, N. Ayache, G. Malandain, P. M. Koulibaly, K. P. Ebmeier and J. Darcourt, Automatic classification of SPECT images of Alzheimer’s disease patients and control subjects, Medical Image Computing and Computer-Assisted Intervention — MICCAI, Lecture Notes in Computer Science, Vol. 3217 (Springer, Berlin, Heidelberg, 2004), pp. 654–662. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!