World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Microsleeps are Associated with Stage-2 Sleep Spindles from Hippocampal-Temporal Network

    https://doi.org/10.1142/S0129065716500155Cited by:14 (Source: Crossref)

    Behavioral microsleeps are associated with complete disruption of responsiveness for 0.5s to 15s. They can result in injury or death, especially in transport and military sectors. In this study, EEGs were obtained from five nonsleep-deprived healthy male subjects performing a 1h 2D tracking task. Microsleeps were detected in all subjects. Microsleep-related activities in the EEG were detected, characterized, separated from eye closure-related activity, and, via source-space-independent component analysis and power analysis, the associated sources were localized in the brain. Microsleeps were often, but not always, found to be associated with strong alpha-band spindles originating bilaterally from the anterior temporal gyri and hippocampi. Similarly, theta-related activity was identified as originating bilaterally from the frontal-orbital cortex. The alpha spindles were similar to sleep spindles in terms of frequency, duration, and amplitude-profile, indicating that microsleeps are equivalent to brief instances of Stage-2 sleep.

    References

    • 1. M. T. R. Peiris, R. D. Jones, P. R. Davidson, G. J. Carroll and P. J. Bones, Frequent lapses of responsiveness during an extended visuomotor tracking task in non-sleep-deprived subjects, J. Sleep Res. 15 (2006) 291–300. Crossref, Medline, Web of ScienceGoogle Scholar
    • 2. T. Akerstedt, I. Torsvall and M. Gillberg, Sleepiness in shiftwork, a review with emphasis on continuous monitoring of EEG and EOG, Chronobiol. Int. 4 (1987) 129–140. Crossref, Medline, Web of ScienceGoogle Scholar
    • 3. M. Congedo, F. Lotte and A. Lecuyer, Classification of movement intention by spatially filtered electromagnetic inverse solutions, Phys. Med. Biol. 51 (2006) 1971–1989. Crossref, Medline, Web of ScienceGoogle Scholar
    • 4. J. McLaren, J. C. Erie and R. F. Brubaker, Computerized analysis of pupillograms in studies of alertness, Invest. Ophthal. Vis. Sci. 33 (1992) 671–676. Medline, Web of ScienceGoogle Scholar
    • 5. D. Sommer, M. Golz, T. Schnupp, J. Krajewski, U. Trutschel and D. Edwards, A measure of strong driver fatigue, in Proc. Int. Driv. Symp. Human Fact. Driv. Assess. Train. Vehicle Desi., Vol. 5 (2009), pp. 9–15. Google Scholar
    • 6. D. Sommer, T. Hink and M. Golz, Application of learning vector quantization to detect drivers dozing-off, Eur. Symp. Intel. Technol. Hybrid Syst. Implement. Smart Adapt. Sys., Vol. 2 (2002), pp. 275– 279. Google Scholar
    • 7. J. L. Ong, D. Kong, T. T. Y. Chia, J. Tandi, B. T. T. Yeo and M. W. L. Chee, Co-activated yet disconnected neural correlates of eye closures when trying to stay awake, Neuroimage 118 (2015) 553–562. Crossref, Medline, Web of ScienceGoogle Scholar
    • 8. G. R. Poudel, C. R. H. Innes, R. Watts, P. Bones and R. D. Jones, Losing the struggle to stay awake: Divergent thalamic and cortical activity during behavioral microsleeps, Hum. Brain Mapp. 35 (2014) 257–269. Crossref, Medline, Web of ScienceGoogle Scholar
    • 9. J. Toppi, L. Astolfi, G. R. Poudel, C. R. Innes, F. Babiloni and R. D. Jones, Time-varying effective connectivity of the cortical neuroelectric activity associated with behavioral microsleeps, Neuroimage 124 (2016) 421–432. Crossref, Medline, Web of ScienceGoogle Scholar
    • 10. Y. Aoki, R. Ishii, R. D. Pascual-Marqui, L. Canuet, S. Ikeda, M. Hata et al.., Detection of EEG-resting state independent networks by eLORETA-ICA method, Front. Hum. Neurosci. 9 (2015) 1–12. Crossref, Medline, Web of ScienceGoogle Scholar
    • 11. Y. Jonmohamadi, G. Poudel, C. Innes and R. Jones, Voxel-ICA for reconstruction of source signal time-series and orientation in EEG and MEG, Australas. Phys. Eng. Sci. Med. 37 (2014) 457–464. Crossref, Medline, Web of ScienceGoogle Scholar
    • 12. Y. Jonmohamadi, G. Poudel, C. Innes and R. Jones, Source-space ICA for EEG source separation, localization, and time-course reconstruction, Neuroimage 101 (2014) 720–737. Crossref, Medline, Web of ScienceGoogle Scholar
    • 13. F. de Pasquale, S. Della Penna, A. Z. Snyder, C. Lewis, D. Mantini et al.., Temporal dynamics of spontaneous MEG activity in brain networks, Proc. Natl. Acad. Sci. U.S.A. 107 (2009) 6040–6045. Crossref, Web of ScienceGoogle Scholar
    • 14. M. J. Brookes, M. Woolrich, H. Luckhoo, D. Price, J. R. Hale, M. C. Stephenson et al., Investigating the electrophysiological basis of resting state networks using magnetoencephalography, Proc. Natl. Acad. Sci. U.S.A. 108 (2011) 16783–16788. Crossref, Medline, Web of ScienceGoogle Scholar
    • 15. H. Luckhoo, J. R. Hale, M. G. Stokes, A. C. Nobre, P. G. Morris et al., Inferring task-related networks using independent component analysis in magnetoencephalography, Neuroimage 62 (2012) 530–541. Crossref, Medline, Web of ScienceGoogle Scholar
    • 16. J. M. Stephen, B. A. Coffman, R. E. Jung, J. R. Bustillo, C. J. Aine et al., Using joint ICA to link function and structure using MEG and DTI in schizophrenia, Neuroimage 83 (2013) 418–430. Crossref, Medline, Web of ScienceGoogle Scholar
    • 17. J. C. Mosher, P. S. Lewis and R. M. Leahy, Multiple dipole modeling and localization from spatio-temporal MEG data, IEEE Trans. Biomed. Eng. 39 (1992) 541–557. Crossref, Medline, Web of ScienceGoogle Scholar
    • 18. J. Sarvas, Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem, Phys. Med. Biol. 32 (1987) 11–22. Crossref, Medline, Web of ScienceGoogle Scholar
    • 19. K. Uutela, M. S. Hämäläinen and R. Salmelin, Global optimization in the localization of neuromagnetic sources, IEEE Trans. Biomed. Eng. 45 (1983) 716–723. Crossref, Web of ScienceGoogle Scholar
    • 20. M. S. Hämäläinen and R. J. Ilmoniemi, Interpreting magnetic fields of the brain: Minimum norm estimates, Med. Biol. Eng. Comput. 32 (1994) 35–42. Crossref, Medline, Web of ScienceGoogle Scholar
    • 21. A. M. Dale, A. K. Liu, B. R. Fischl, R. L. Buckner, J. W. Belliveau, J. D. Lewine et al., Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity, Neuron 26 (2000) 55–67. Crossref, Medline, Web of ScienceGoogle Scholar
    • 22. R. D. Pascual-Marqui, Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details, Methods Find. Exp. Clin. Pharmacol. 24 (Suppl D) (2002) 5–12. MedlineGoogle Scholar
    • 23. R. E. Greenblatt, A. Ossadtchi and M. E. Pflieger, Local linear estimators for the linear bioelectromagnetic inverse problem, IEEE Trans. Biomed. Eng. 53 (2005) 3403–3412. Google Scholar
    • 24. S. E. Robinson and J. Vrba, Functional Neuroimaging by Synthetic Aperture Magnetometry (SAM) Proc. 11th Int. Conf. Biomagnetism (Tohoku Univ. Press: Sendai, 1998), pp. 302–305. Google Scholar
    • 25. K. Sekihara, S. S. Nagarajan, D. Poeppel, A. Marantz and Y. Miyashita, Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique, IEEE Trans. Biomed. Eng. 48 (2001) 760–771. Crossref, Medline, Web of ScienceGoogle Scholar
    • 26. B. D. Van Veen, W. van Drongelen, M. Yuchtman and A. Suzuki, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Trans. Biomed. Eng. 44 (1997) 867–880. Crossref, Medline, Web of ScienceGoogle Scholar
    • 27. Y. Jonmohamadi, C. Innes, G. Poudel, D. Weiss, R. Krueger et al., Comparison of beamformers for EEG source signal reconstruction, Biomed. Signal Process. Control 14 (2014) 175–188. Crossref, Web of ScienceGoogle Scholar
    • 28. K. Sekihara and S. S. Nagarajan, Adaptive Spatial Filters for Electromagnetic Brain Imaging (Springer, Berlin, 2008). Google Scholar
    • 29. S. Sanei and J. A. Chambers, EEG Signal Processing (John Wiley & Sons, Ltd, Chichester, West Sussex, 2007). CrossrefGoogle Scholar
    • 30. S. Makeig, S. Debener, J. Onton and A. Delorme, Mining event-related brain dynamics, Trends Cogn. Sci. 8 (2004) 204–210. Crossref, Medline, Web of ScienceGoogle Scholar
    • 31. E. M. Ventouras, P. Y. Ktonas, H. Tsekou, T. Paparrigopoulos, I. Kalatzis and C. R. Soldatos, Independent component analysis for source localization of EEG sleep spindle components, Comput. Intell. Neurosci. 2010 (2010) 1–12. CrossrefGoogle Scholar
    • 32. G. R. Poudel, R. D. Jones and C. R. H. Innes, A 2D pursuit tracking task for behavioural detection of lapses, Australas. Phys. Eng. Sci. Med. 31 (2008) 528–529. Google Scholar
    • 33. C. Innes, G. Poudel and R. Jones, Efficient and regular patterns of nighttime sleep are related to increased vulnerability to microsleeps following a single night of sleep restriction, Chronobiol. Int. 30 (2013) 1187–1196. Crossref, Medline, Web of ScienceGoogle Scholar
    • 34. G. Bush and P. Luu, Cognitive and emotional influences in anterior cingulate cortex, Trends Cogn. Sci. 4 (2000) 215–222. Crossref, Medline, Web of ScienceGoogle Scholar
    • 35. T. F. Oostendorp and A. van Oosterom, Source parameter estimation in inhomogeneous volume conductors of arbitrary shape, IEEE Trans. Biomed. Eng. 36 (1989) 382–391. Crossref, Medline, Web of ScienceGoogle Scholar
    • 36. R. Oostenveld, P. Fries, E. Maris and J. M. Schoffelen, FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data, Comput. Intell. Neurosci. 2011 (2011) 1–9. Crossref, Medline, Web of ScienceGoogle Scholar
    • 37. A. Delorme and S. Makeig, EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics, J. Neurosci. Methods 134 (2004) 9–21. Crossref, Medline, Web of ScienceGoogle Scholar
    • 38. A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Comput. 7 (1995) 1129–59. Crossref, Medline, Web of ScienceGoogle Scholar
    • 39. S. Makeig and M. Inlow, Lapses in alertness: Coherence of fluctuations in performance and EEG spectrum, Electroencephal. Clin. Neurophysiol. 86 (1993) 23–35. Crossref, MedlineGoogle Scholar
    • 40. M. Bonjean, T. Baker, M. Lemieux, T. Timofeev, I. Sejnowski and M. Bazhenov, Corticothalamic feedback controls sleep spindle duration in vivo, J. Neurosci. 25 (2011) 9124–9134. Crossref, Web of ScienceGoogle Scholar
    • 41. I. Manshanden, J. C. De Munck, N. R. Simon and F. H. Lopes da Silva, Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms, Clin. Neurophysiol. 12 (2002) 1937–1947. Crossref, Web of ScienceGoogle Scholar
    • 42. M. Caporro, Z. Haneef, H. J. Yeh, A. Lenartowicz, C. Buttinelli, J. Parvizi et al., Functional MRI of sleep spindles and K-complexes, Clin. Neurophysiol. 2 (2012) 303–309. Crossref, Web of ScienceGoogle Scholar
    • 43. S. Sarasso, P. Proserpio, F. Moroni, M. Ferrara, A. M. M. De Gennaro, L. Pigorini et al., Hippocampal sleep spindles preceding neocortical sleep onset in humans, Neuroimage 86 (2014) 425–32. Crossref, Medline, Web of ScienceGoogle Scholar
    • 44. K. C. Andrade, V. I. Spoormaker, M. Dresler, R. Wehrle, F. Holsboer, P. G. Sämann and M. Czisch, Sleep spindles and hippocampal functional connectivity in human NREM sleep, J. Neurosci. 31 (2011) 10331–10339. Crossref, Medline, Web of ScienceGoogle Scholar
    • 45. M. Schabus, T. T. Dang-Vu, G. Albouy, E. Balteau, M. Boly et al., Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep, Proc. Natl. Acad. Sci. USA. 104 (2007) 13164–13169. Crossref, Medline, Web of ScienceGoogle Scholar
    • 46. A. Sonnleitner, M. Sebastian, T. Michael Simon, S. Willmann, A. Ewald, A. Buchner et al., EEG alpha spindles and prolonged brake reaction times during auditory distraction in an on-road driving study, Accid. Anal. Prev. 62 (2014) 110–118. Crossref, Medline, Web of ScienceGoogle Scholar
    • 47. V. V. Vyazovskiy and I. Tobler, Theta activity in the waking EEG is a marker of sleep propensity in the rat, Brain Res. 1050 (2005) 64–71. Crossref, Medline, Web of ScienceGoogle Scholar
    • 48. H. Wang, C. Zhang, T. Shi, F. Wang and S. Ma, Real-time EEG-based detection of fatigue driving danger for accident prediction, Int. J. Neural. Syst. 25 (2015) 1550002. Link, Web of ScienceGoogle Scholar
    • 49. U. R. Acharya, S. Bhat, O. Faust, H. Adeli, E. C. Chua, W. J. Lim and J. E. Koh, Nonlinear dynamics measure for automated EEG-based sleep stage detection, Eur. Neurol. 74 (2015) 268–287. Crossref, Medline, Web of ScienceGoogle Scholar
    • 50. Y. Jonmohamadi and R. Jones, Source-space ICA for MEG source imaging, J. Neurol Eng. 13 (2016) 016005. Crossref, Medline, Web of ScienceGoogle Scholar
    • 51. S. Ghosh-Dastidar, H. Adeli and N. Dadmehr, Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection, IEEE Trans. Biomed. Eng. 55 (2008) 512–518. Crossref, Medline, Web of ScienceGoogle Scholar
    • 52. A. Destexhe, S. W. Hughes, M. Rudolph and V. Crunelli, Are corticothalamic ‘up’ states fragments of wakefulness? Trends Neurosci. 30 (2007) 334–342. Crossref, Medline, Web of ScienceGoogle Scholar